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A. M. ASCE. --Rumer and Drinker have 

bridged the gap between packed beds and single spheres. They have 

a lso indicated how fluidized beds behave in this gap. The following 

d evelopment is an attempt to extend their results to higher Reynolds 

numbers . 

An equation applicable for all liquid flow regimes in porous 

d
. . 9 

me 1a 1s 

µU dp _ __ s + 
ds k 

2 
cpU 

s (25) 

where dp/ds is the pressure drop per unit length due to friction, and 

c has a value of 0. 550 + O. 024 for unconsolidated porous media. 

The permeability is given by the Kozeny-Carman equation
12 

3 
n 

k = KTa 
V 

(26) 

a 
September, 1966, by Ralph R. Rumer, Jr., and Philip A. Drinker 

(Proc. Paper 4914). 

11 
Assoc. Prof. of Civil Engrg. , Dept. of Civil Engrg. , Colorado 

State Univ. , F ort Collins, Colo. 

12 
Corey, A. T. , Fluid Mechanics of Porous Solids, Colorado State 

University, Fort Collins, Colorado, 1965, p. 49. 
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where K is a dimensionless constant that depends on the shape of 

the cro ss section of flow, T is the tortuosity, and a is the surface 
V 

area of dry packing per unit of packed volume. K is exactly 3 for a 

cross section formed by closely spaced parallel plates and is exactly 

2 for a circular cross section. The tortuosity of fully saturated 

unconsolidated porous media that are isotropic is about 2. 

For unconsolidated porous media, Eq. 26 can be written in 

the following form 
13 

n 3 cf>! M 2 
k = g 

2 ln a 
36KT(l-n) a g 

g 

(27) 

where cf> is the particle shape factor, M is the geometric mean 
s g 

particle size, 36 is a pure number, a is the geometric standard 
g 

deviation of the particle size distribution, and K has a value of 

2. 36 + 0. 11 for unconsolidated porous media. 

An empirical relationship for cf> is 
s 

1 (0 . 198 
cps - -n -a-+ 

g 
- 0. 330 

which is valid for n ;:: 0. 78 and l <;, a <;, 2. 
g 

For a bed of uniform diameter spheres, 

M = d, and Eq. 27 can be simplified to 
g 

(28) 

a = 1, 
g 

n=0.37, 

13 
Closure to reference 9, Volume 92, No. HY4, Proc . Paper 485 9, 

July, 1966, pages llO - 121. 



k=n3d2 
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36 KT (1- n) 

3 

Sub stituting Eq. 29 into Eq. 25 gives 

2 
36KT (1-n) µ U 

dp = s + 

n 3 d2 ds 

6 -{KT (1 ,.. n ) c p u 2 

s 

Eq. 14 can be written as follows 

f = CD 21:_ d 
2 

p u 
2 

p 8 s 

(29 ) 

(3 O) 

(31 ) 

The relationship between the actual average velo city o f flow within the 

pore system a nd U is 
s 

u = 
s n 

(32 ) 

because the \jT is the ratio of the length of the tortuou s path taken 

by fluid elements to ds. 

Eq. 6 can be written as 

6(1-n) dAds 
N= 

1T d 3 

and if dz is zero, Eq. 2 can b e written 

( 3 3 ) 
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dp = _F-R __ 
ds ndA ds (34) 

Therefore, combining Eqs. 5, 31, 32, 33, and 34, one obtains 

dp = 3 
ds 4 

(35) 

which is the same as Eq. 15 except that CD in Eq. 35 is equal to the 

drag coefficient given by Eq. 15 divided by T . Setting Eq. 35 

equal t o Eq. 30, and solving for CD , one obtains 

48K (1-n) 8 3/2~ C = ---- + en -
D R T 

(3 6) 

Substituting into Eq. 3 6 t he known values of K . , n , c , and 

T , one obtains 

C = 
71. 4 + 1. 08 

D R 
(37) 

F R < 104 . . 1 1 t. f h · 14 
or = , an emp1r1ca re a 10n or one sp ere 1s 

24 3 
C = + - + 0. 34 

D R -yR ( 38) 

14 
Fair., G. M. and Geyer, J. C. , Water Supply and Waste-Water 

Disposal. New York: John Wiley and Sons, Inc., 1954, page 586. 
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Using the data given in Fig. 2, the terminal settling velocity appears 

15 
to be roughly 15. 3 cm/ sec corresponding to a Reynolds number 

of 372. According to Eq. 38, the drag coefficient would have a value 

of 0. 560. This point is plotted in Fig. 3 along with Eq. 38. 

The porosity of the expanded bed is given by the following 

. . 1 t. 16 emp1r1ca equa 10n 

n =(Us )0.2? 
e ut 

(3 9) 

where ne is the porosity of the expanded bed and ut is the 

terminal free settling velocity of the spheres. Setting n = 0. 37, 
e 

the value of the superficial velocity for which the bed begins to expand 

is roughly 0. 167 cm/ sec corresponding t o a Reynolds number of 

4. 06. According t o Eq. 37, the drag coefficient would have a value 

of 18. 7. This point is plotted in Fig. 3 along with Eq. 37. It should 

be remembered, as previously noted, that the values of CD given 

be Eq. 37 are approximately 1/ 2 of those given in Fig. 2 for a packed 

bed. 

15 
Reference 14, page 588 . 

16 
Rich, L. G. , Unit Operations of Sanitary Engineering. New 

York: John Wiley and Sons, Inc., 1961, page 149. 
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FIG.3- C0T Versus R for uniform diameter spheres 
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At the velocity where a packed bed begins to expand, u 
SC 

t he pressure drop, b.p , is given by rewriting Eq. 22 in the following 

form 

pg b.s ( 1 - n) (S - 1) 
s 

(40) 

Further increases in U result only in slight increases in b.p . 
s 

Therefore rewriting Eq. 35 in the form 

(41) 

and setting it equa~ to Eq. 40, the result is 

3 
_ l) gdn 

TU 2 
s 

(42) 

which is the same as Eq. 23 except that the value of CD given by 

Eq. 42 is equal to the drag coefficient given by Eq. 23 divided by T , 

as previously not ed. If one substitutes into Eq. 42 the known values 

of n= 1, T = 1, and U = 15. 3 cm/ sec for the fully expanded bed, the 
s 

value of CD given by Eq. 42 is 0. 498 which is reasonably close to 

the value given by Eq. 38 which was 0. 560. 

Setting Eq. 42 equal to Eq. 37, and solving for U , one obtains 
s 

0. 79 cm/ sec corresponding to a Reynolds number of 19 . 2. Both 
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Eqs. 42 and 37 give a value for CD of 4. 80. This point is also plotted 

in Fig. 3, and comparison with the experimental data in Fig. 2 indicates 

that the exponent of 0. 22 in Eq. 39 appears to be too low to apply to 

uniform d iameter spheres. A better value appears to be roughly 

1 / 3, so that perhaps Eq. 39 can be written as 

( 43) 

substituting Eq. 43 into Eq. 42 gives 

(44) 

Substituting the known values of S s , d , p , ut , and µ into 

Eq. 44, one obtains 

C T = 185 (45) 
D R 

Eq. 45 is also plotted in Fig. 3. It should be noted that the 

value given above for ut which was 15. 3 cm/ sec could have easily 

been either 14 or 16 cm/ sec or could be even more inaccurate because 

of the graphical method used for the determination of ut . Therefore 

all values based on ut would contain the same inaccuracy and may 

account for some of the minor· discrepancies previously observed and 
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t he fact that Eq. 45 does not appear to intersect Eq. 38 at quite the 

correct location. In addition, it would appear that while the line given 

by Eq. 45 appears to have approximately the correct slope, it probably 

should be shifted to the right slightly in order to better fit the 

experimental data. 

The weakest link in the development of Eq. 44 is probably 

Eq. 43. If the authors have values of n as a function of Us , 
e 

it would be very helpful if they could show a plot of log n versus 
e 

(
u 

log u:} using the correct value of ut to determine the correct value 

of the exponent in Eq. 43 for uniform diameter spheres. Because 

Eq. 44 is definitely correct for Us = ut , any other equation replacing 

Eq. 44 must be the same as Eq. 44 when n = 1. 
e 

According to McCabe and Smith 
17

, the value of CD for one 

sphere approaches a minimum of 0. 44 for 500;: R ; 200,000. This 

is indicated in Fig. 3. 

The relationship between R and Rk can be developed for 

uniform diameter spheres using Eq. 29 

R = 
k 

n3/2 R 

6-{KT ( 1 -n) 
(46) 

17 
McCabe, W. L. , and J . C. Smith, Unit Operations of Chemical 

Engineering, McGraw - Hill Book Co. , New York (1956 ), 36 0. 
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and using the known values of n , K , and T gives 

Rk = 0. 0274 R (47) 

Flow in porous media can be characterized by four flow 

regimes 
13 

which are given in Table 1. 

TABLE 1. --POROUS MEDIA FLOW REGIMES 

Flow regime 

Linear laminar 

Nonlinear laminar 

Transition 

Turbulent 

0. 0182 

1. 42 ± o. 08 

4. 23 ± 0. 51 

R for uniform 
diameter spheres 

0. 665 

51.9±2.9 

154 ± 19 

Darcy's law, Eq. 10, is valid only for the linear laminar 

flow regime. The value of Rk separating the linear laminar and 

nonlinear laminar flow regimes was arbitrarily taken as the value of 

Rk for which the quantity dp/ds , as calculated by Eq. 10, is 1% 

low. 

The beginning of the transition flow regime was taken as the 

value of Rk obtained when turbulence was first observed in any of 

the visible pore spaces. The beginning of the turbulent flow regime 

was taken as the value of Rk obtained when all visible pore spaces 

were just completely turbulent. The values of Rk are the same 
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regardless of whether they are approached by either increasing or 

decreasing velocity. 

The ratio of the R eynolds numbers at the end and beginning 

of the transition flow regime appears to be somewhere between 2. 48 

and 3. 54 which compares favorably with equivalent ratios of 2 in 

circular pipes and 2. 7 5 in open conduits. Schneebeli 
5 

found from 

visual observations of flow in porous media that the first appearance 

of turbulence occurred at a value of R of about 60 which compares 

favorably with the value given in Table 1 when variations in n , 

cf> s , and a g are taken into account. Three of the f•our flow regim es 

given in Table 1 are shown in Fig. 3 and o.bviously apply only to 

Eq. 37. 

This write r is somewhat puzzled by the comments of the authors 

with regard to Eq. 19. First, the range of validity is for R < 2. 

Second, there are no discrepancies between Eqs. 19 and 36 if 

~ = 48 K ( 1 - n) ( 48 ) 

3/2 
C n 

Cl = 6( 1 - n ) --{KT. (49 ) 

and c
2 

, c
3 

, C 
4 

, . .. are all zero . Third , the authors have not 

submitted any experimental data to confirm the validity of Eq. 19. 

Fourth, Eq. 19 is an approximate solution for the drag coefficient for 
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lam inar flow past a sphere and does not necessarily have any relevance 

t o the dra g coeffici ent for porous media. 
18 

Fifth, Oseen' s expre s s ion 

for the drag coefficient for laminar flow past a sphere is 

C = 24 9 
D R + 2 (50) 

which Rumer 
18 

states , has been shown to be applicable for R ; 5. 

Therefore Eq. 19 i s actually 

(51) 

a nd c
2

, c
3 

, c
4 

, . . . are all zero . He nce, only the first t erm in 

t he s eries of Eq. 20 should be retained, and 

(52) 

s o that Eq. 21 cannot be obtained from Eq. 20 and therefore Eq. 2 1 

is incorrect and Eq. 52 is the correct expression that should have 

been written for Eq. 21. By, comparing Eqs . 29 and 49, it is obvious 

t hat Eq. 52 becomes 

18 
Rum er, R. R. Discussion of "Laminar and Turbulent Flow of Water 

Through Sa nd, " Journal of the Soil Me c hanics and Founda t ions Division, 
ASCE , Vo l. 9 0, No . SM2, Proc. Paper 3850, March, 1964, pa g e 205 . 



f = 
k 

+ C 

13 

(53) 

and there is no reason why c should not have a constant value for 

unconsolidated porous media. It is apparent from Eq. 49 that C 
1 

is a function of n. There is no experimental evidence to suggest that 

Eq. 52 is only a partial representation for fk , and therefore higher 

order terms are not necessary. 

C = 
p 

A comparison of Eqs. 13 and 30 shows that 

1 
36 KT 

(54) 

and therefore C is not a function of porosity and does not include 
p 

the ratio of pore volume to area of solids. 

f = 
p 

Eq. 3 1 can be written as follows 

2 
a p u 

s 
(55) 

where a is the surface area of a sphere. In a circular pipe, 

f = h p g !!.. D
2 

(56) 
p 4 

where D is the diameter of the pipe. The equivalent surface area is 
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a= 1rDs 

Substitution of Eqs. 56 and 57 into Eq. 55 gives 

2 
s us 

h = C 
D D 2g 

19 
and comparison with the Darcy-Weisback equation 

h = f 
s u 

s 
D 2g 

2 

(57) 

(58) 

(59) 

would indicate that the drag coefficient for circular pipes is the 

dimensionless friction factor f . 

From Fig. 3 it is apparant that th€ drag c oe1'fident for 

fluidized beds is still unknown because the variation in the value of 

T is unknown. However, it should be possible to derive a relationship 

for the variation of T which could then be verified experimentally. 

Nevertheless , Rimer and Drinker have opened up a vast new area of 

research. 

19 
Reference 14, page 303. 
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