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ABSTRACT

INTEGRATING DISCRETE STOCHASTIC MODELS WITH SINGLE-CELL AND
SINGLE-MOLECULE EXPERIMENTS

Modern biological experiments can capture the behaviors of single biomolecules within single
cells. Much like Robert Brown looking at pollen grains in water, experimentalists have noticed that
individual cells that are genetically identical behave seemingly randomly in the way they carry out
their most basic functions. The eld of stochastic single-cell biology has been focused developing
mathematical and computational tools to understand how cells try to buffer or even make use of
such uctuations, and the technologies to measure such uctuations has vastly improved in recent
years. This dissertation is focused on developing new methods to analyze modern single-cell
and single-molecule biological data with discrete stochastic models of the underlying processes,
such as stochastic gene expression and single-mRNA translation. The methods developed here
emphasize a strong link between model and experiment to help understand, design, and eventually

control biological systems at the single-cell level.
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Chapter 1

Introduction

Many physical, chemical, and biological processes are characterized by discrete particles that
randomly uctuate in space, time, or number. These microscopic uctuations often provide the
key to understand and modify mechanisms that control macroscopic phenomena. By and large,
stochastic uctuations in discrete numbers of speci ¢ genes, RNA, or proteins across genetically
identical populations of cells play an important role in the understanding of gene regulation [1-5].
As an example, consider the fate of the bacté&iecoli, in which a small, seemingly random
subset of the population is in a persistent state that can evade antibiotic treatment [6]. This is often
thought of as a bet-hedging strategy, as the persistent cells are able to survive attacks at the cost of
slower growth and division, while the remainder of the population is able to grow and divide while
remaining vulnerable to attack [6—8]. However, what molecular mechanisms determine which cells
become persistent, and which grow and divide?

To solve this kind of question, it is important to understand the underlying stochastic pro-
cesses that in uence critical biological systems. Only recently have modern experimental tech-
niques, such as ow cytometry, single-cell RNA sequencing, and single-molecule uorescence
in-situ hybridization (smFISH) [9-11] allowed for the precise quanti cation of the uctuations of
biomolecules like DNA, RNA and protein at the single-cell and single-molecule level. The “rules”
governing these processes, such as mass action kinetics, transcription factor based gene expression
regulation, and much more can be modeled and then compared to high resolution data, which may
invalidate the different hypotheses (or models) about how a biological process works. However, the
details of how to model such processes depend on the type of data that is being collected, the com-
putational feasability of the model, and the underlying statistics of the process that is being mea-
sured. Several approaches have been developed to t models to the statistical moments [12-14],
stochastic trajectories [15], or full probability distributions [11, 16] of data collected with these

experimental techniques. Despite the progress of these computational and modeling approaches,



our ability to quantify single biomolecules in single cells has created a need for more tools that
include the biological details that can be measured experimentally.

In systems where uctuations are not critical to our understanding their underlying mecha-
nisms, mathematical modeling has been used to gain insight about the system and design experi-
ments to collect better data [17], and even predict how the system responds to new inputs. Such
models allows scientists and engineers to use component parts to compose novel systems that can
perform pre-programmed tasks. In biology, this type of model-driven approach has had some
success, from sustained oscillations of gene expression [18] to identifying certain types of cancer
cells [19]. A major roadblock to applications of systems biology is a lack of our ability to develop
predictive models. Methods that are able to predictively model biology can revolutionize person-
alized medicine, agriculture, and biofuel production by applying systems engineering principles.
One challenge in biology is that uctuations in biomolecule numbers, even across isogenic pop-
ulations, are often non-Gaussian, which necessitates the use of modeling approaches that do not
make assumptions about the shapes of the underlying distributions [20]. Furthermore, phenomena
are often discrete, and not continuous, which leads to interesting behaviors when particle numbers
are low. In fact, the choices that one makes in computational analyses can have a profound impact
on our ability to infer model parameters and make useful predictions [20, 21].

In light of the current challenges created by modern data and computational resources, this dis-
sertation develops new theoretical and computational tools to improve the current state-of-the-art
for stochastic modeling of gene expression in biological systems. Because uctuations in biologi-
cal systems are critically informative for building predictive understanding in biology, each method
developed here uses a uctuation based analysis to model, interepret, and even design experiments
for modern measurement approaches.

Within these goals, the methods developed fall in to two main categories, the rst of which is
to develop new theory that integrates discrete stochastic models and single-cell data. The goal with
the projects associated with this aim isitgorporate data into model reduction strategi€bhe

general idea of these tools is that the measurements that are collected can be used to help constrain



models in various ways. Such tools allow the modeller to identify models and their parameters
and design experiments more ef ciently. Chapter 4 discusseg&ithiee state projection based
bounds on the likelihood of observing single-cell dg&a], which develops new bounds on the
likelihood of oberving a measured data set given a particular model of stochastic gene expression.
These bounds utilize single-cell data, such as smFISH measurements, to constrain the acceptable
modeling error needed to identify models. They can be used to rapidly eliminate much of parameter
space that matches data poorly with minimal computational expense. In Chapter 5, we develop
projection based reduction of chemical master equation models using single-cell data. In this
work, we show how single-cell data can be used to construct a reduced basis that describes the
important dynamics of the system. We then project the FSP onto this data-de ned basis and use
the reduced model to identify model parameters.

The second set of analyses uses stochastic models to design single-cell experiments. Chap-
ters 6 7 develops a method to use discrete stochastic models to design optimal experiments with
Fisher information. Fisher information is a common tool in statistics and engineering that uses
a model of a system to determine the expected information that can be gained by performing a
particular experiment. Often, the Fisher information is used to determine the precision to which
model parameters can be estimated within a particular experimental setting. We derive the nec-
essary equations to compute the Fisher information for stochastic models of gene expression and
then demonstrate how it can be used to design experiments for several common models of gene ex-
pression. Finally, we apply the Fisher information to experimentally measured RNA distributions
in the canonical HOG-MAPK stress response system in yeast. Our form of the FIM for stochastic
gene expression is the only analysis that uses all of the uctuation information contained in distri-
butions, and leads to different experiment design decisions than one would nd using methods that
make assumptions about the shape of the distributions of biomolecules being measured.

Chapter 8 develops methods to integrate stochastic models of single-molecule translation with
novel single-particle translation measurements. We develop a stochastic codon-dependent model

of single ribosomes as they move along mRNA and elongate proteins. These models incorporate



synthetic sequences that encode epitope regions that bind antibody-like probes. Recent experimen-
tal capabilities use this principle to image single polysomes within single cells [23—-26]. However,

a major limitation of these experiments is the number of antibody-like probes that are available,
which fundamentally leads to a small number of genes that can be measured in single-cells. The
purpose of our research in this area is to use stochastic models to nd predictable uctuation n-
gerprints in the uorescence intensity measurements that arise in different genes as they translate.
These different ngerprints allow us to tell apart two different genes as they translate in single-
cells, even if they have been labeled with the same antibody-like probes.

The next chapter introduces the chemical master equation (CME), which has been the workhorse
of systems biology in recent years. Because the CME is dif cult to solve directly (it often consis-
tents of an in nite set of ordinary differential equations), we often use the nite state projection
approach (FSP) [27]. The FSP truncates the CME into a nite number of equations. Chapter 2
also discusses other common analyses of the CME, including the stochastic simulation algorithm
and approaches based on the dynamics of the moments of the CME. Chapter 3 introduces sev-
eral likelihood functions which may be used to compare modern experimental data with stochastic
models. These functions depend on the assumptions of the model and the resolution (i.e. bulk
measurements, single-cell uorescence measurements, or single molecule measurements) of the

data, and are used throughout this dissertation.



Chapter 2

The Chemical Master Equation

2.1 Chemical Master Equation
Like many single-molecule kinetic events, gene expression is often modeled as a Markov pro-

cess, where each discrete stafe= |, , 5 ::: ' corresponds to the integer numbers
of N chemical species (e.g., RNA or protein). Transititl)n events between states are different re-
actions such as transcription, translation or degradation, and these reactions can be indexed by

2 11;2;::;; Mg. These reactions occur with propensitres x;)dt, which is the probability that
the ™ reaction occurs in the next in nitesimal time stépt + dt) given the current statg . State
transitions are described as! x; = x; + , Where s the stoichiometry vector that de-
scribes the change in population after tifereaction. In such models, each node has a continuous
valued probabilityp(x;; t) that evolves in time according to the linear ODE known as the chemical
master equation (CME), [28, 29]

BN X
RO - ke D w )P0 ©): (2.2)

=1 =1

By enumerating all possiblex; X»;:::;g 2 X and corresponding probabilities,
P= p(xit) p(xpt) : T, the CME can be posed in matrix form §sp(t) = Ap (1), where
A is known as thén nitesimal generator(examples oA are provided in later sections).
The CME dimension is often in nite, making it impossible to solve directly for most systems.
The nite state projection (FSP) approach was developed to allow one to approximate the CME

solution within strict error bounds [11, 27, 30].



(a) Chemical Master Equation (b) Finite State Projection (c) Finite State Projection
(single sink) R (multiple sinks)

A

Species;>
Species?
Species>

v

Figure 2.1: Demonstration of the nite state projection approximation to the chemical master equédion.
Graph representation of a master equation with two species and in nite states. (b) Finite state projection
with a subset of the full state state space, and any reaction that leaves the set of states indlerastiyo

into the sink statg(t). (c) Same as (b), except with multiple sinks.

2.2 Finite State Projection

In its formulation, the FSP approach selects a nite set of indides,fj;:::;j L g with which
it separates the full state spaXento two exhaustive and disjoint se¥s; = fx;,;:::;X; gandits
complemeniX ;0. Under this reorganization, the full master equation can be written

2 3 2 32 3

d gPa(t) Asy AgozgPa(t)z
4 6= £§97E (2.2)
pJo(t) Aoy Ajogo  pyot)

To approximate the CME, the FSP approach forms a nite state Markov process, where all nodes
in X ;o are aggregated to one or more sink stgtédsat record the probability mass that leaves.
However, the FSP approach requires all probability mass witiirremain ing as time proceeds.

The new, reduced FSP-CME becomes

2 3 2 32 3
deP5"7 6 An  07gp5"7.
S8 =8 " £97 £ (2.3)
a(t) 1Ay 0 o(t)

The resulting approximation in Eq. (2.3) provides three key insights into the exact CME solution.

First, it provides a lower bound on the true solution,



2 3 2 3

FSP
ng (t)g ij(t)g forall t> O: (2.4)
0 pJO(t)

This can be easily interpreted by noting that probability can only I&ayén the FSP-CME (Eq.
2.3), but can return fronX jo to X ; in the original CME (Eq. 2.2). Second, the FSP provides an

exact measure of the approximation error,

2 3 2 3
SEJ((?)% ﬁpgsg(t)% = Py PESP(D) ,+ ipael); (2.5)
B
1
= i (Diy + jpool;,  PE(D) 2.6)
=1 5P, @)
= g(t); 2.8)

wherej j; denotes the absolute sum of a vector. Finally, as states are added toXhe et error

g(t) decreases monotonically. Proofs of these results are provided in [30, 31]. The FSP yields a
nite set of linear ordinary differential equations. In the case of a non-time varying in nitesimal
generator matrix, the solution to the FSP for an initial condipgf® (0) at timet is simply the

matrix exponential,

P3P (t) = exp (A,yt) P57 (0): (2.9)

However, for many interesting systems shown in Chapters 4 and 6, the geeratone-varying.
In these situations, we are limited to numerically integrating the set of ODEs in Eq. 2.3.
The state space of the FS&;, is easily de ned through use of polynomial projection shapes
[30],
X3 = fxj suchthaf(xj) ¢ forall constraintk =1;2:::;Kqg: (2.10)



Heref f «(X;)gis a set of polynomials of the population counts, and the constifagggsare weights

on these polynomials that may be increased (decreased) to include more (fewer) states. In practice,
eachk™™ constraint can be associated with its own s, which aggregates all states that satisfy
thefl;:::;(k 1)g" constraints, but not thk" constraint. The value ad(t;) then quanti es
probability of violation for thek™ constraint, which in turn guides the systematic increasg .of

With this expansion, the FSP algorithm presented in [27, 30] can be used to sekeg¢ttamake

g(t) = P « % (t) small for a speci ed nite time. However, lower error will require more states

and greater computational expense, which is described in detail in Chapter 4.

2.3 Moments of the Chemical Master Equation

Often, the FSP is computationally intractable to solve. In such cases, one may turn to statis-

tical moments of the time varying distributigat) de ned by the CME, which are often able to
be ef ciently computed. For systems with af ne linear propensity functions (i.e. the propensity
functionw(x;t) = wg(t)x + wy(t), the moments of the CME can be computed to arbitrary order.
The uncentered moments of the CMEf x™ g, wherem = [mq; my; :::; my_] is a vector of inte-
gers corresponding to thra!" power of thei'" species inx, and the entire momenxt™ is found
according to the following formula [12]:

dEfx™g _ (X'“ e m, o mi#) .

—a E L w; (x) i:1( i+t ) . : ; (2.11)
In the next chapter, | will show how these moments have been used to maximize the likelihood of

a stochastic model given single-cell data. For example, consider a simple birth and death process,

with two reactions
R1:21% X: R2: X1 2:

This process has a stoichiometry matrix and propensity matrix given by



=1 1 (2.12)
23 2 3

w = 9%y 4§92 (2.13)
0

Applying these to Eq. 2.11 we nd the following dynamics for the mean of the process,[1]

as

dEfxg
dt

= Efk (x+1) x)+ x((x 1) x)g

= k; Ef xg: (2.14)

Interestingly, this form of the equation exactly matches the macroscopic ODEs corresponding to
the same system. This is true whenever propensity functions are lineax y@#j. Similarly, the

second uncentered moment of the process can be found

dEfx2g

5 =E k (x+1)? x*2 + x (x 12 x?

= 2E x* +(2k + )Efxg+k,: (2.15)

While moment-based approaches can be useful in calculating solutions to the CME, when the
propensities are nonlinear, one must turn to approximations such as moment closures [12] to nd
the moment dynamics. Even with exact moments, the number of moments that needs to be com-
puted to accurately represent the underlying distribution can be large, and leasds to a large, dense
set of equations to be integrated that computationally comparable to solving the full master equa-
tion [20]. In such situations, it may be useful to turn to stochastic simulations of the chemical

master equation.



2.4 Simulating the Chemical Master Equation

Perhaps the most common approach to solving the chemical master equation is to nd sample
paths from the time varying probability distribution. This is achieved through the stochastic simu-
lation algorithm (SSA), often called the Gillespie algorithm [33]. Each trajectory simulated using
this algorithm is a sample path from the solution to the chemical master eqpéxiarn. Algo-
rithm 1 outlines a simple SSA implementation, called the direct method. Essentially, this approach
uses two randomly generated number to determine when does the next reaction happens and which

reaction occurs. From these two pieces of information, the state is updated.

Algorithm 1 Stochastic Simulation Algorithm
Initialize X = Xgq, t = tg, W = W(Xo; to)

whilet<t¢ do
r, = unif(0;1)
ro, =unif(0; 1)
a = JW(X;t)j;
=min[log(1=r)=a;t; t]
t=t+
k=1
while r, < wy=g do
P k
W = o WilX;)
k=k+1
end while
X=X+ |

end while

By running many simulations, one can approximate the solution to the CME with high delity,
though many trajectories may be required to achieve low enough error, especially when the dis-
tribution being sampled has long tails. The error aNesamples of the trajectory ®(N 1),

as are all Monte Carlo algorithms. As an example, to estimate a probabilit9 6f one needs
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Figure 2.2: Demonstration of the SSA and FSP approaches to solving the chemical master ecdbatiqrhe
trajectories simulated by the SSA are shown in grey, with one example in black. After some time, the system
has equilibrated and the distribution is stationary. The right panel show a normalized histogram of 500 SSA
trajectories compared to the FSP solution with error less 1i8af.

to run 10° trajectories. Sample trajectories and the FSP solution are shown in Fig. 2.2. Because
of the computational challenges presented by Monte Carlo approaches to simulating the chemical
master equation, approximation schemes have been developed to more ef ciently generate sample
paths. Perhaps the most commonly used-isaping, in which each reaction is taken to occur a
Poisson-distributed number of times in the small time perig@4-37]. However, care must be
taken in choosing appropriate values diecause the propensities are often functions of the value
of the state, and therefore may change substantially if a large number of reactions occur in the time
. A classic pathological example that many of the above articles deal with is if the propensities
are such that more degradation reactions happen in tith@n the number of productions plus
the number of proteins already in the system, in which case the total number of protein become
negative.

Many different approaches to modeling using the CME have be used, and ultimately the correct
choice depends on the computational resources available, the delity of the data that is being used
(i.e. single-cell vs. bulk measurements, discrete molecule counting vs. intracellular uorescence),
and the importance of stochasticity in the problem. This dissertation is mainly concerned with
systems in which using the FSP approach is the best option, though throughout compares results to
those one would get using a moments based approach or a stochastic simulation based approach.

The next chapter utilizes these different approaches to nd the likelihood of different types of

11



data sets, for bulk measurements with Gaussian errors to discrete molecule counting of individual

RNA.
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Chapter 3
Likelihood-based identi cation of stochastic models

of gene expression

To make a model of a biological process useful, one must match experimentally observed
variables to those in the model, i.e. tthe model to the data. However, there are many approaches
to model calibration or tting that one may take, depending on the type of data that is being
considered, the computational cost of solving the model, and whether the uncertainty in the kinetic
parameters of the model is of interest or only a single point estimate of the parameters. To even
further complicate the problem, one must decide which model or models to use in the rst place,
and how to rigorously discriminate between multiple models. The famous quote from Jon von
Neumann “With four parameters | can t an elephant, and with ve | can make him wiggle his
trunk" aludes to the tradeoff between model complexity and over tting a model. However, in
many ways this quote neglects yet another challenge, which is that models with more parameters
may t more features of the data, but actually nding those regions of parameter space can be
extremely dif cult. The approach of our work is to start with the assumption that we do not have
the true model, but instead a model which can be useful particular aspects of the system, and that
can be invalidated. To nd such kinetic parameters, and to perform model selection, one needs
to determine the quality of the t and the associated uncertainties for a particular model and a
particular data set.

This chapter derives likelihoods of different types of data for models of stochastic gene ex-
pression under different assumptions about the characteristics of the data that is being t. Once
the likelihood function that is appropriate to use is established, it can be applied in maximum

likelihood frameworks, Bayesian inferenence, or other optimization schemes of interest.
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3.1 Derivation of Likelihoods

In Chapters 4-6 we are interested in analyzing snapshot measurements of independent cell pop-
ulations, such as those collected using smFISH, over multiple time points. The smFISH technique
uses small oligo-nucleotides with attached uorophores that hybridize to an RNA of interest [9,10].
These uorescent probes bind to the complementary sequence of the RNA of interest in the cells,
producing diffraction limited spots that can be counted in each cell to quantify the discrete number
of RNA in a given cell. In cells with large numbers of RNA, it may be dif cult to discern the
numbers of spots of RNA that appear in each cell. However, cells must be xed for the oligo-
nucelotide probes to enter them, and therefore each temporal measurement contains unique cells,
and often in this case one assumes that the measurements are independent in time, as no single-cell
temporal correlations are available. One other advantage of this approach is that it does not require

genetic modi cations to the genes that are being studied, as is common for time-lapse microscopy

are independent. Part or all of the speciexinmay be measured, whete  (1;2;:::;Ns)
is set of N, observable indices. MeasurementsNyf cells can be concatenated into a matrix
D: [di;dy;:::;dy. ]t Of the observable dimensions at each measurementtime

For FSP models, the likelihood of indpendent measurements and its logarithpricgasured
cells can be written directly is simply the product of the probabilities, where stateas observed

y; times at timet:

N . vt Y L - .
(Dj )= p(Xj5tj )Y (3.1)
t=t1j2) p
o XX L
log"(Dj ) = Y log(p(Xj;tj )); (3.2)
t=t1j2) p

whereJp is the set of states observed in the data. The vex{tor) is the marginal distribution
of the observable species from the joint probability vegl(or). The summation in Eq. 3.1 can be

rewritten as a product logp(x-), wherey  [yo;V1;:::;ym] (i.e. binned data).
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3.2 Moment-based approaches to likelihood

As previously discussed, in many situations computing the full solution to the FSP is compu-

tationally intractable, and one must attempt to instead identify model parametgramatch-
ing the moments of the chemical master equation to the moments of single-cell data. In the
limit of large numbers of molecules reacting in a well-mixed solution, the linear noise approx-
imation (LNA) may be applied to CME [29]. In such cases, molecule numbers are consid-
ered to be Gaussian, and the well-known Gaussian form of the likelihood may be applied [38].
If the observed data is assumed to come from a multivariate Gaussian distribution with means

(t; )= 1(t; ); 2(t; )i no(t; )]T and covariance matrix (t; ), such as those in Egs.
2.11, the likelihood is given by:

Yoo ye ) 1
D; ;)= 2 ™j (i) 2 exp Sdi(®) )" i) @®) @3

t=t1 i=1

In [13, 14, 39], the authors suggest approximating the likelihood where the sample mean and
variance are taken to be jointly Gaussian, i.e. the random veetdr ¢; <]",Z N (z;C), and

C is the covariance matrix:

0 1

C C
c=fh °° oK (3.4)
(c.,J)" C

S s

The submatrices on the diagonal correspond to the variance ahd s, and the off diagonal
terms correspond to correlations between the sample means and variances.

In [14], they derive the elements of each of these matrices in terms of the moments of the
underlying model distributiop(xj ) for models with one or two species.

For example, consider the variance/covariance of the sample méan is, where we have
the data matrix witiN measurementX = [x] xJ :::x}]", where each row in the matrix
corresponds to a different measurement. The sample mean be writterl” X =N, wherel is a

column vector of ones of siZd . Without loss of generality, IdEf X g =0, and
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T

1
C..=yz E 1"™XX ™1 E 1'X E 17X (3.5)
= 1E 1'xxT1 = NE xx7 3.6
e e (3.9

1

Similar procedures can be used nd the rest of @ieOne challenge with this approach is high-
lighted with the practicality of using measured sample variance when the population variance is
large. This is demonstrated in Fig. 3.1, which shows the distribution of sample variances for the
induced RNA Hog-MAPK data from our work in [20]. Essentially, a broad distribution of sample
variances can lead to a high probability of sampling a sample variance that is lower than the true

variance, which can bias the maximization of the estimation of parameters.

3.3 Inference of time-series data

All of the likelihood functions discussed up to this point discuss data that are independent in
time. Most often, this means that one cannot track single cells over multiple time points, but rather
to take a measurement one must X the cells (as is the case with smFISH data or single-cell RNA
sequencing data) or that the cells have no identity (as with basic ow cytometry data). However,
time correlated data are very common in uorescence time-lapse microscopy data, and can provide
a large wealth of data. While this area is still being actively researched [38, 40, 41], | will brie y
outline an FSP-based approach to inferring likelihood from time-series data.

Consider a single time-series measurement of a single uorescent protein,

y, the data can be considered a single-sample path of the full time-varying probability distribution
p(y;tj ). Note that although this section is written from the perspective of a single uorescent
protein in a single cell, it can easlily be extended to measurements of multiple proteins or proteins
and RNA in single cells. Because temporal correlations may last the entire trajectory of gene
expression that has been measured, the likelihood at a given time point depends on the entire path

until the nal time,
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Figure 3.1: The effect of nite data on estimates of the variancg, Distributions of sample variances

1,000 measurements of 100 cells (purple), 1,397 cells (green) and 10,000 cells (orange) were computed.
1,397 cells were measured experimentally for the 0.2M condition=afl5 min. When many cells are
measured, the distribution of is approximately Gaussian (orange). However, with less measurements
(green and magenta) these distributions are not only more broad (as expected by the central limit theorem),
but also skewed. This skewness arises because of the long tails often observed in the data. This means that
a relatively small random sampling of such distributions will underestimate the variance of the distribution.
However, infrequently the tail of this distribution will be measured, and the sample variance will be much
larger than the true variance. On average, the estimator is unbiased; the mean of all three distributions is the
same.
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(i )= Py Yeiityng ) (3.8)

Under the Markov assumption, the probability of moving frento y, depends only op(y;), and
therefore the probability of observing is the probability that the system wasyn and moved
to y,, or the transition probabilitp(y,jy:). Therefore, the likelihood can be written as a series of

transition probabilities,

(y) = plyn)p(y2jys); ::p(Ynyn 1) (3.9)

= p(y1) i p(yijyi 1) (3.10)

and the log-likelihood is (3.11)
log™(y) = log p(y1) + i logp(yijyi 1): (3.12)

(3.13)

Noting again that the solution of the FSP (with non-time-varying propensity functions) is given by
thep(t;) = exp(A( )ts)p(0), the matrixQ( ) = exp(A( ) t) maps the solution of the master
equation at time to the solution at time timé+ t, i.e. p(t+ t) = Q( )p(t). Therefore

Q( ) is a matrix of the transition probabilities in the time. In the case of uorescent time-lapse
experiments, t corresponds to the measurement sampling period. Therefore, the log-likelhood of

time-lapse data found using the FSP can be found from

X
log " (y) = log p(y1) + logQy,y: .- (3.14)

i=2

This approach is exact in the sense that it does not make any assumptions beyond those of standard
chemical reaction kinetics. It remains to be seen how approximations of this approach via linear
noise approximations changes the inference of model parameters. For the other likelihood-based

inference methods discussed above, there are a plethora of examples throughout this dissertation.
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Figure 3.2: Time series inference of single-cell dat#a) Haploid cells with a single copy of a gene and a
diploid cell with two copies of the same gene. (b-d) Example trajectories of the different cell types haploid
(yellow) and diploid (purple), wittkon = ,ko =3 ,k =100, and = 1. In(b), = 0:1, (c)

=1,(d) =10. Foreach value of, the likelihood that a given trajectory came from the correct model
log " (yaj a) orforthe incorrect moddbg " (yaj s) was computed for both haploid and diploid cells. The
difference was binned and plotted on the right.
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However, as motivation for the time-series inference, consider the following experiment, where
there is a population of cells that either have one copy of a given gene (haploid cells) or two
copies of that gene (diploid cells). If we assume that the production rate and switching dynamics
of a two-state promoter are equal for each gene, we are left with the standard “bursting gene
expression' model of transcription, shown in Fig. 3.2(a) [1], and diploid cells undergo a slightly
different stochastic process with three effective gene states, corresponding to a single copy actively
transcribing RNA, both copies actively transcribing RNA, and neither copy actively transcribing

RNA, which makes up the following set of biochemical reactions:

R1: Go o '™ Go on

Ko

kon
R3 . Go ;on! GOn;On

2k,

R4: Gonon °° Go :on
R5: Gono ! Gono + RNA
R6: Gonod °“ Gono + RNA
R7: RNA  ?: (3.15)

Thus, we have two different models of the biochemical procesggsfor the haploid cells and

qgip for the diploid cells. For each of these two models, we simulated time series trajectories using
the SSA [33],1, shown in Fig. 3.2, where each trajectory corresponds to RNA abundance in either
a haploid or diploid single cell. The likelihood of each trajectory was computed under both model
assumptiondpg (Y] gip) andlog (yj nap). We then subtract the likelihood of the correct model,
labeled A whether the trajectory was simulated witl, or ap from the incorrect model, labeled

g . If the likelihood of the correct model, is higher than the likelihood of the incorrect model

s, their difference will be positive and the trajectory was correctly classi ed, shown in Fig. 3.2(b-
d), right panels. To test the effect of different promoter switching rates, each panel (b-d) has a

different promoter switching rate,, which affects the model parametersigs = ,k, =3 .
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As promotor switching increases, the trajectories are much easier to identify as belonging to a
diploid or haploid cell, as the processes are essentially Poisson with two different mean expression
levels. However, at slow switching rates, the dynamics between the two time series are much more
similar, though still identi able using this approach.

While this work demonstrates one potential use of the FSP to infer time-series data, the like-
lihood function in Eq. 3.14 could be used to infer model parameters from single-cell trajectories
using maximum likelihood approaches, or to nd posteriors of model parameters in a Bayesian
setting. Furthermore, most current experiments measure a single uorescence signal that changes
over time in a single cell, as opposed to discrete RNA or protein numbers as this approach as-
sumes. However, the deconvolution of total uorescence into protein numbers has been used to t
ow cytometry measurements with the FSP in the past [42], and the same idea could be applied to
single-cell time series.

The next chapter introduces a new upper bound on the likelihood in Eq. 3.1, by recognizing
that the FSP solution only provides a lower bound in the likelihood of single-cell data. We derive
this upper bound and nd a novel algorithm to rapidly compute it. This upper bound depends on
the model errorg(t), which in turn depends on the amount of states in the FSP and ultimately the

computational expense to solve the model.
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Chapter 4
Finite state projection based bounds to compare
chemical master equation models using single-cell

datal

4.1 Introduction

A little over ten years ago, the nite state projection (FSP [27]) approach was introduced to
approximate the solution of the Chemical Master Equation (CME [28, 29]) and to capture the
dynamics of discrete molecular events that control single-cell gene regulation. Since that time,
the FSP has received substantial attention; has seen numerous computational improvements; and
has become a benchmark tool in the analysis of stochastic gene regulation. Most recently, the
FSP has been used to t and predict experimental data in yeast, bacteria, and human cells [43].
The main utility of the FSP is to provide precise bounds on the accuracy of its approximation
as well as a systematic approach to improve that accuracy. However, improved accuracy comes
with increased computational cost, and no attention has been given to how one could optimize
this tradeoff. Careful evaluation of this tradeoff is needed to improve the rigor and ef ciency with
which FSP models can be matched to experimentally measured data. In this work, we develop new
FSP-based bounds on the likelihood of single-cell data given a stochastic model; we show how
these bounds can be used to reduce computational costs; and we demonstrate how the co-design of
FSP tools and experimental data can lead to ef cient inference of discrete stochastic models from

experimental single-cell data.

1This work was published in PLoS Computational Biology in 2019.
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4.2 FSP-Derived Bounds on the Likelihood

To quantify how experimental data affects the accuracy requirement for the FSP, we consider
single-molecule, single-cell data, such as that obtained using the technique of smFISH. This tech-
nique allows experimentalists to count the number of speci ¢ RNA molecules in individual cells,
as described in Chapter 3. The solution for the FS%,% and is guaranteed to be a lower bound
on the model's true solutiop = [p(X1); p(x2);:::] by Eq. (2.4). The log-likelihood in Eq. 3.1 is
monotonic in eaclp(x;); thereforepSP provides a lower bound on the log-likelihood Bfgiven

the model,

X X
LB, (D) di logp5=* (xi) di logp(xi): (4.1)
i2l D i2l D
However, in Eq. (2.3) the FSP also provides the exact error in the solution of a particular model

described by the CME. By redistributing the known FSP error back onto the CME solution in an

optimal manner, an upper bound lmg L (D) can be derived,

X X
UB;(D) max dlog pj°F(x)+ " di logp(x;i)
IRERPI i2l b
X
suchthat: "j=gand"; O (4.2)

i
where"; is the probability error redistributed to state To optimize the redistribution aj and
determine UB(D), we use a modi ed water- lling algorithm similar to those used to determine
the amount of power to send to different channels in communications systems [44,45]. To simplify
notation, we de ne the FSP probability for each statepas pj>F(x;) and the corresponding
partial objective a§; d; log(p + "i). To determine which states have the highest impact on the

likelihood, the derivative of ; with respect td'; is computed from Eq. (4.2) to get

8
@ < =9 fori2lp w3
@0 7 fori 62 |
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and we de neNp as the number of distinct observations (i.e., the sizexdf These values are

then ranked in decreasing magnitude according to

& & o & o CTND; (4.4)
P1 P2 P PNp

where the notationrefers to the data-ordered state spAge = fXx;X%;; i1 % i1 XN, 9. AN Op-

timal redistribution ofg will equalize the rstn terms of Eq. (4.4) and satisfy the linear constraints

9
=

dr+ & 41 = G Graapr

T e P P forr 2f1,::;n  1g (4.5)
>

r 0 !

X

IIJ:g

For example, when = 4,"; can be directly solved from the following linear equation:

2 32 3 2 3
@G & 0 0 "1 dipy  G2pr
0 d 0 " a; d-
3 2 27 _ 2Ps3 3P : (4.6)
0O 0 & ds7 §"3 azps  daps

In this formulation, the number of states to which probability is redistributeds the largest
dimension for which the solution of Eq. (4.6) is strictly positive for'all If the statesX ; used

by the approximation do not span the support of the distribution of data, there vailstages for
whichp; = 0 and% - Is in nite, and f";g will always include some mass for those states.
Algorithm 1 provides pseudocode for the proposed error redistribution approach. At most, the
FSP error redistribution algorithm requirlls, s iterations, and in practice computation of the

upper bound on the likelihood takes only a fraction of the time needed for the FSP solution itself,

especially for cases where the data corresponds to partial state observations.
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Algorithm 2 FSP Error Redistribution Algorithm

Rank &f
@ vz g i

n: '"1:g
i of @f

while o > on andn <N p do
n! n+1

Solve for"y,",,...,"y using Eq. 4.5

end while

The FSP-derived bounds on likelihoods have several important implications for the comparison
of stochastic models to single-cell data. Letlenote a particular combination of a model and its
parameters, and |&t(D] ) denote the likelihood oD given . In the case wheX; = ? (i.e,
the FSP set is empty), all of the probability mass must be redistributed, and the FSP-derived upper
bound is given by:

(4.7)

1
R R NP - G & o dy
° 5 G

D

This result is easily understood — the maximum of the log-likelihood function occurs when the
distribution of the data exactly matches the model, and in this case the FSP upper bound describes
the best any potential model can ever do. To interpret bounds for non-trivial FSP projections, we
make use of the facts that (i) the FSP approximation lower bpuimtreases monotonically &s;

is expanded [27] and (ii) the likelihood increases monotonically as paicicreases. As a result,
LB;(D) and UB; (D)) are guaranteed to be monotonically increasing and decreasing functions of
the projection size. Fig. 4.1 illustrates the converging upper- and lower-bounds for the likelihoods

of two FSP models as the size of the indexJ sedr equivalently the size of ;, is increased.
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4.2.1 Using FSP-Derived Bounds for Model Discrimination
For any two models and their parameter setsand ;, we de ne the set of suf cient discrim-
inating projections, ( i; ;), as any pair of projection index set,andJ;, that guarantees the

correct ranking of likelihoods for the two models,

(a5 ) f JiJjgsuchthatUB ( i) < LBy ( )

orUBy ( ;) < LBy ( 1) (4.8)

Intuitively, these are any two projections such that the worst possible likelihood for one model
is greater than best possible likelihood of the other. In Fig. 4.1, the red and green circles denote
pairs of projections suf cient to guarantee that parameter sas more likely than ;. Because

( 1; 2) can contain an in nite set of such pairs with varying projection sizes, we de ne a

minimal symmetric discriminatory projectiong( i; ), as

s( i; ;) smallestsef suchthaftJ;Jg2 ( i; ;): (4.9)

In Fig. 4.1, the blue circle denotes( i1; ). Finally, in many sequential parameter searches,
previous FSP models may already be computed to high accuracy, and it may not be necessary
to demand the same accuracy for subsequent models. For this case, we de ne a minimum non-

symmetric projection size such that:

i( s ;) smallestsed; suchthafJi;Jjg2 ( i; ) (4.10)

The utility of this particular discriminatory projection size de nition becomes important in parame-
ter search problems, where it enables sequential likelihood evaluations to be conducted at minimal
projection sizes. In Fig. 4.1, the green circles denotes Hfe ;; ,) a particular combination
where the size oK ;, is minimized given a previous computation %, . As the examples below

will demonstrate, utilization of these minimal discriminating projections can substantially reduce
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the computational effort in parameter inference by eliminating much of the potential parameter

space with smaller projection sizes.

log(L(D| ))

S

Projection Size

Figure 4.1: Schematic of discriminatory projection sizeMonotonically upper and lower FSP bounds on
the likelihood are shown for two parameter setsand ». The red and green circles illustrate two pairs of
projectionsin ( 1; »2) that enable exact ranking of the two parameter sets. The blue circle illustrates the
minimal symmetric discriminatory projectiong( 1; 2). The lled green circle illustrates the minimal
nonsymmetric discriminatory projectionz( 1; 2), heeded to discriminate the system given the previous
analysis of 1 (open green circle).

4.2.2 Relationship of FSP bounds to other CME truncations

The FSP upper and lower bounds present an opportunity to better understand relationships be-
tween the FSP and other CME approximations in the context of single-cell data. For example,
several groups have imposed limits of species [46] or total molecule populations [47], which result
in truncated master equations with re ecting boundary conditions (in contrast to the FSP's absorb-
ing boundary condition). In a similar vein, one could renormalize the FSP solution to make use of

the original FSP computation. For this renormalization, the CME can be written in terms similar
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to the FSP solution as:

%psenorm - AJJ pgenorm + pgenorm (411)

where = jA;;pF"™Mj, is the rate of ow of probability out oiX ;, which is now redistributed
back intoX ; according to the probabilitp?"°"™. However, the solution of this non-Markovian

system is identical to simply renormalizipgs" at all times:

FSP
P;

renom — _bJ__ 4.12
P ip5hi, (4.12)

This can easily be shown by substituting Eq. (4.12) into Eq. (4.11).

Because the FSP likelihood bounds provide the best- and worst-case redistribution of exiting
probability, likelihoods computed by re ection, renormalization or any other arbitrary strategy
are guaranteed to lay between the computed FSP bounds. Therefore, it is possible that re ecting
boundaries may provide an improved approximation of the true likelihood for a particular com-
bination of data and model. Unfortunately, the likelihoods of re ected or renormalized solutions
are not necessarily monotonic and the likelihoods of renormalized solutions for two different pa-
rameter sets or models may change rank depending on the projection size. These issues will be

addressed further in Section (4c).

4.3 Application of FSP-Derived Bounds

To demonstrate the application of the FSP bounds, this section uses simulated data and three
examples of stochastic gene regulation: an unregulated birth-death model, a genetic toggle switch,

and a non-linear self-activating gene.

4.3.1 Birth-Death Model

The variability in mRNA copy numbers for housekeeping genes is well captured by the stan-

dard single-species birth and death model. This model consists of two reactions that describe
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transcription and degradation as shown in Fig. 4.2(a),

R1: 21" x R2: x!" »

where the propensity functiong = fwy; w,g are

wi =K wo = X

Table 4.1 shows three different parameter sets for this example. A well-known analytical solution

for this model, assuming(0) = 0, is the time-varying Poisson distribution

Xi

: e
p(xijke; ) = , (4.13)
X!
kr t
where = —(1 e 'f):
The in nitesimal generator for this model can be written as
8
% wi(Xi)  wy(xi) fori=]j
W1 (X; for (i;j ) such that; = x; +1
A= a0 (i) =Xl @10
g Wy (X;) for (i;j ) such tha; = x; 1
-0 otherwise
The FSP formulation for this model can be written from Eq. (4.14) as
2 3 2 32 3
Po Ky 0 S 0- = Po
P1 kr kr 2 0 P1
0 k ki 2 0
dg P27 _ f f P2 7. (4.15)
th I Nm 28
PN 0 0 kr kr Nm 0 PN
g(t) 0 0 0 K 0 o(t)
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Figure 4.2: FSP bounds for the birth/death modéh) Schematic of the RNA birth and death process. (b)
Probability distributions for the RNA birth and death process=atl . Simulated data is in black. The lower

bound Eg. (2.4) is shown in red, and the upper bound Eq. (4.2) is shown in blue. The shaded region denotes
the redistribution of FSP error to maximize the likelihood of data. See Table 4.1 for parameters.

WhereN, is the size of the FSP truncationg{ X ; = fXg;X1;::5;Xn,, 9). In this case, we used
a single constraint function in Eq. (4.5)(xj) = X;  ¢1, wherec; = N,,. To expand the state
space for this modet; is simply increased by one in each iteration.

For this model and the parameters provided in the bottom row of Table 4.1, we simulated 500
trajectories of the stochastic simulation algorithm [33], and plot the resulting “data” in Fig. 4.2(b)
(black). For a projection sized de ned N4, = 50, Fig. 4.2(b) also shows the FSP lower computed
using Eq. (2.4) inred and the FSP upper bounds from Eq. (4.2) in blue. Figure 4.3 demonstrates the
convergence of the upper and lower FSP bounds &sincreased for two different parameter sets.

Increasingc; adds more states % and monotonically decreases the egoin turn, less error is
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Figure 4.3: Demonstration of the converging bounds for the birth and death modépper and lower

bounds on the likelihood of a simulated data set given two different parameter setsd -, as a function

of the number of states included in the birth-death model. As the number of states increases, the upper and
lower bounds monotonically converge to the true likelihood of each parameter set. The horizontal dashed
lines are the likelihood values found using the analytical solutions in Eq. (4.130dicates the minimum

symmetric projection size thguaranteeorrect discrimination between the two parameter sets. See Table
4.1 for parameters.
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Table 4.1: Birth and death model parameters

L kNt D] (5

1 50.0 0.5
, | 49.65 0.5
n 45.0 0.5

available to be distributed to the FSP solution, and UB) and LB;( ) converge monotonically

to the analytical value dbgL (Dj ) as shown by the horizontal dashed lines.

4.3.2 Toggle Model

We next explore the application of the FSP bounds on the classic toggle model for two mutually
inhibiting genes, cl andlacl, as illustrated in Fig. 4.4(a). The rst synthetic toggle switch was
experimentally constructed by Gardner et al [48], but here we consider a simple model similar to
that presented by Tian and Burrage [49]. For this model, each state is de ned by the the discrete

number of each proteirx, = [ cl Lacl]. The four reactions are:

R1: 2! ¢l R2: cl'™ 2;

R3: ?2!" Lacl, R4: Lacl! ?:

where the propensity functiong = fwy; W,; Wy; W,g, are given by

K a
W= byt ;o Wp = . cl;
1+ | glacl e ¢
kLacl
W3 = Dag + Ws = a0 Lacl

1+ cl Cl o

The toggle model parameters are shown in Table 4.4, which have been used to generate simulated
data shown in black in Fig. 4.4(b).

The in nitesimal generator for this toggle model can be written:
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Figure 4.4: FSP bounds for the toggle modéh) Schematic of the toggle model with two mutually repress-

ing proteins, Lacl and cl. (b) Marginal probability distributions of Lacl dt= 8 hrs. Simulated data is

in black. The lower bound Eg. (2.4) is shown in red and the upper bound Eq. (4.2) is shown in blue. The
shaded region denotes the redistribution of FSP error to maximize the likelihood of data. See Table 4.4 for

parameters.

Table 4.2: Toggle model parameters

b cl k cl Lacl Lacl cl b_acl kLacl cl cl Lacl

(sH ] EH [N w0 (N'sH[6EH YN 9] 0 [(N1sh
6.8e-5| 1.6e-2| 6.1e-3 | 2.1 6.7e-4 | 2.2e-3| 1.7e-2| 2.6e-3 | 3.0 3.8e-4
6.8e-5| 1.6e-2| 6.1e-3 | 2.1 8.0e-4 | 2.2e-3| 1.7e-2| 2.6e-3 | 3.0 3.8e-4
6.8e-5| 1.4e-2| 6.1e-3 | 2.1 6.7e-4 | 2.2e-3| 1.6e-2| 2.6e-3 | 3.0 3.8e-4
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wo(x;)  for (i;j) suchthax; = x; +[ 1; 0] (4.16)

ws(X;) for (i;] ) such thak; = x; +[0; 1]

Ws(X;) for (i;] ) such thak;

8
X4
w (xi) fori =]
=1
wi(X;) for (i;] ) such thak; = x; +[1; O]
§ Xj +[0; 1]

0 elsewhere

To apply the FSP to truncate the toggle model CME, we consider three constraint functions from
Eq. (2.10), where;, ¢, andcz de ne the projection as

8
%fl(xi):(LacI Hcl 4 o

X3 = fxjgsuch that fo(xi) = Lacl ¢ (4.17)

fa(xj)= cl ¢

These constraints are illustrated in Fig. 4.5. Fig. 4.4(b) shows the marginal probability distribution
for Lacl with ¢; = 150, ¢, = 95, andcz = 55. This plot shows the FSP lower bound in red

and FSP upper bound in blue. Although Algorithm 1 distributes the error onto the joint probability
distribution of both species, results are plotted only for the marginal distribution. By monotonically
increasings, more states are included, and the egi) decreases. Fig. 4.6 shows the converging
bounds for two parameter sets, where the total numbers of states satisfying the constraints in Eq.
(4.17) is represented on the x-axis. For simplicity in presentatoandcs were initially set at

high values of 95 and 55, respectively, and the expansion only modi es the ciGteri@imilar

results can be obtained with more general expansion routines, provided thigg constant or

monotonically increasing for eat¢h

4.3.3 Comparing FSP Bounds to Other CME Truncation Approaches

To illustrate potential issues that arise through application of other CME truncation approaches,

we consider a simple gene regulation model with nonlinear self-activation. In this model, the
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Figure 4.5: FSP state space expansion. Maximum species counts, as in Egs. (4.17b) and (4.17c) are

C2 = Npaa = 95 andN , = 55. States included within a truncation of = 500 are in gray. A is

increased, the boundary (dashed lines) increases to include more states, the FSP error decreases, and the
FSP bounds converge to one another (see also Fig. 4.6).
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Figure 4.6: Demonstration of the converging bounds for a two dimensional sy&tpper and lower bounds
on the likelihood of a simulated data set given two different parameter send -, as a function of the
number of states included in the toggle model. Parameters are given in Table llI.
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Figure 4.7: Positive self-regulated gene expressionFirst order degradation (black line) and positive
feedback in production (red, green, dashed) can give rise to bistable (red) or monostable dynamics (green,
dashed). Blue dots represent stable equilibria and the cross represents an unstable equilibrium. See Table
4.3 for parameters and Fig. 4.8(c) for examples of the corresponding distributions.

propensity of birth is given by the positive feedback function

Xn
Wl(X) = k1+ k2 m ; (418)

and the propensity of production is a rst order process givewhy= X . In this formulation,

k, is the rate of production for small valuesxafk, + k; is the rate of production for large values

of x; m is the value ofx at which the rate of production is halfway betwdgnandk; + k;; and

the cooperativity facton determines the steepness of the function as it moves kiaimk; + k.

In the deterministic regime, this model of self-regulated gene expression can lead to one or two
stable equilibria as illustrated in Fig. 4.7. In the stochastic regime, this corresponds to bimodal
distributions in some parameter regimes, and unimodal distributions in other regimes. Table 4.3
provides three possible parameter sets for this model. We simulated data from the rst of these
models, e, Which admits a single stable point (see the dashed line in Fig. 4.7) and yields a

unimodal distribution of data as shown in black in Fig. 4.8.

Next, we consider two perturbations of this true parameter set,
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Table 4.3: Effective parameters for counterexample

L Lk [k |m|n| |
e | 20 | 40 | 70| 4| 1
A | 225 40 |70 4|1
s | 20 | 125|704 |1

(a) Projection Size=45 (b)
" —1250 i
o log10L (DID)
004 — —1300
b ~—~~
% o o) Bt I910'—(D| A)
Number of speciex =
8 © P B 0|
S
a Projection Size=285 g
— -—1450} .
log10L (D] B)
—1500
i A 9% 50 100 150 200 250

Number of speciex Projection Size

Figure 4.8: Comparing FSP bounds with other CME truncation approachi@y.Distributions of response

of the sel-f-regulated gene. Simulated data is in black. The renormalized FSP solutions ifoshown in

red for g andin greenfor 5. Both methods use a projection size of 45. (b) Likelihood versus projection
size for different CME truncations. The renormalized scheme is shown with dashed lines, and the re ecting
scheme is shown with dotted lines. All schemes lie within the FSP bounds (solid lines) and eventually
approach the correct likelihood values. Results for parameter setre in green and for g are in red. At
moderate projections sizes, the renormalized and re ecting boundary scheme appear to converge to a higher
likelihood for g than for a. At higher projection sizes, the trend is switched. (c) The same as (a), but
now the projection size has been increased to XXX.
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A =[ kil ") ke nm ] (4.19)

B =[ K1 K nm ]
where A and g correspond to the red and green lines, respectively, in Figs. 4.7 and 4.8, and
their parameters are given in Table 4.3. Fagy the system has a bimodal response and fgr
the response is unimodal. It is interesting to explore how the application of the renormalization
scheme in Eq. (4.12) would affect comparison of these two models to the simulated data. For
a projection size of 45, Fig. 4.8(a) suggests that provides a better match to the data than

A. Moreover, the likelihood of the data giveny, and g appear to be nearly constant over a

substantial portion of the projection space as shown by the dashed lines and the shaded region of
Fig. 4.8(b). Based on this information, it would be easy to conclude thas the more appropriate
parameter set. However, only at large projections which include the second peak in the distribution
for g, does it becomes apparent that thg is the better choice. This scenario illustrates how
the renormalization scheme can complicate parameter discrimination for certain combinations of
models and data. Similar cautions also apply for re ecting boundary approximations of the CME
(see dotted lines in Fig. 4.8). The strict upper and lower bounds provided by the FSP eliminates
this ambiguity as a function of projection size.

It should also be noted that likelihood computations using re ection or renormalization based
truncations require the support of the CME to include that of the experimental data. Otherwise,
these approaches will match the FSP lower bound that suggests that the data is in nitely unlikely.
Such a lower bound may appear uselessness at rst, but as we will see in the next section, the FSP

upper bound may still be suf cient for rigorous and ef cient model selection.

4.4 FSP Likelihood Bounds in Parameter Searches

The FSP's constricting upper and lower bounds on the likelihood enable rigorous discrimina-

tion between two parameter sets; and ,, without using unnecessarily strict error tolerances.

38



The following examples will demonstrate the utility of the suf cient discriminatory projections,

(v ) sCis j)and (&5 ).

4.4.1 Parameter Search for the Birth-Death and Toggle Models

We return to the simulated data presented in Figs. 4.2 and 4.4, but this time we apply the FSP
for many different parameter combinations and for many different projections. Fig. 4.9 illustrates
the practical strength of the minimal symmetric discriminating projectiaq, i; ). For the
birth/death model in Figs. 4.9(a,b), parameter k; is allowed to vary. Fig. 4.9(a) shows the
likelihood of the data as a function of parameterand Fig. 4.9(b) shows the size of the suf cient
symmetric projection, s( ; "), needed to discriminate betweenand a xed parametef . Sim-
ilarly, for the toggle model, both the maximum rates of production for Lacl atidvere varied,

= kg Kkuaq - Inthiscase, Fig. 4.9(c) shows contour plots of the likelihoods and Fig. 4.9(d)
shows the corresponding contours of the sizegf ; *). For models whose likelihood is better
or worse than”, Figs. 4.9(b,d) shows that the comparison can be made with smaller projection
sizes. Considering that the solution of Eq. 2.3 has a complexity that is typi@éiy) or worse
depending upon the solution scheme [50], such reductions can lead to substantial computational
savings. In past studies, the FSP has been solved to uniformly strict error tolerancesl€uéhras
Neuert et al. [11], yet consideration of the FSP bounds allows for error tolerances that are relaxed

by several orders of magnitude.

4.4.2 FSP bounds on STL1 regulation in yeast

To demonstrate the application of the FSP bounds on real data, we examine a recent model
and single-cell experimental data for Mitogen Activated Protein Kinase (MAPK) conti®$Tafl
gene regulation irg. cerevisiadbudding yeast). Yeast activate a variety of regulatory pathways
to mitigate the osmotic pressure difference that arises from solute imbalance across the cell mem-
brane. One such mechanism is the high-osmolarity glycerol (HOG) pathway in yeast [51]. Upon
osmotic shock, the Hog1l kinase phosphorylates and localizes to the nucleus of the cell, where it

initiates transcription of several genes, includBigL1 After cells adapt to the new condition, the
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Figure 4.9: Likelihoods and suf cient projection sizes.(a) Log-likelihood versus RNA production rate

k.. The horizontal line denotes the likelihood at the xed comparison parametefb) The symmetric
projection size s required to compare parameter seto " . For such thatogL(Dj ) = logL(Dj"),

larger projections are needed. The green (red) region represents parameter sets that are better (worse) than
™. (c,d) Same as (a,b), except for the toggle model and two variable pararketgrandk ¢ . Parameters

inside (outside) the dashed contour represent parameter sets are better (worse) than the comparison set
denoted with the black dots. In all plots, dashed lines denote parameter combinations with likelihoods that
are equivalent to the reference set.
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kinase leaves the nucleus, and the transcription pathways turn back off. Interestingly, while the
nuclear localization and transcription initialization is a largely deterministic temporal signal, tran-
script abundance varies considerably between isogenic cells. This variability has been quanti ed
in detail, using the smFISH technique to quantify transcript abundances in single cells at sixteen
different time points at various times from zero to 60 minutes after osmotic shock [11].

The current time-varying CME model of ti&T L1regulation process allows the gene to switch
between four possible states with different transcription rates as shown in Fig. 4.10(a). Reactions
that change the gene from stati® j occur with propensitiegk; g, and the transcription rates are
given byk,,, for each of thé = f1;2;3;4g™" gene states. In this model, one particular transition

ratek,; varies as a function of the Hog1p kinase in the nucleus as:

ko1 (t) = maxf0; + Hoglt)g; (4.20)

where the temporal signal pro le for Hoglp was measured experimentally [11] and is reproduced
in Fig. 4.10(b). As a result of this dependence on a time-varying parameter, the in nitesimal

generator for the CME is a function of time. The FSP truncation of the CME can be written as:

2 3 2 32 3
P1 T S T 2 0] P1
0 T S T 2 0]
dg P2 _ P2 ; 4.21)
t Np, 0
PNm O T S T Nm 0 PNm
g(t) 0 1T 0 gt)

where the matriceS, T, and are given by:
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2 3
K12 k21 (t) 0 0
S(t) = K12 Kog(t) Koz Ksz 0 ;
0 Koz Kso Ksa Kaz
0 0 K34 Kaz
2 3
k, 0 0 0
;B0 k. 0 0F
0 0 k, O
0 0 0 ki,
2 3
OO0
0 0
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Figure 4.10: Gene regulation in the HOG-STL1 systefa) The four-state model of Hoglp-induc8dL1
gene regulation, in which each gene st&ge:( : S4) has a distinct transcription rate. (b) The parameterized

nuclear enrichment signal, Hogl1p(t), that controls the rate of transition 8pmo S;. This signal was
parameterized from experimental measurements at 0.4M NaCl by Nstus il 1].
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Figure 4.11: FSP bounds o$TL1 mRNA Distributions.Experimentally measured distributions $TL1
transcripts are in black for each time point [11]. The FSP lower bounds are shown in red and upper bounds
are shown in blue. The Hog1-STL1 pathway is activated=a0 with a 0.4M treatment of NaCl (see also

Fig. 4.10).

Fig. 4.11 shows examples of distributions for six time points during the osmotic shock re-
sponse. Experimental data [11] (black) were collected using smFISH, and the FSP lower bound
for a moderate projection size is shown in red. At each experimentally measured time point during
the dynamic process, the FSP ergft) is computed based upon the FSP truncation, and the FSP
upper bound oogL (Dj ) (shown in blue) is computed using Algorithm 1. In this illustrative
example, we note that the projection size is substantially smaller than the support of the exper-
imental data, yet the reduced FSP adequately captures the distribution, especially for the earlier
time points. Because a good model must capture both early and late time points, this observation
suggests that smaller projections may be quite informative for model discrimination.

To explore the impact that experimental data has on the required projection for the FSP, we
use the non-symmetric minimal projection to determine the necessary projection size needed for
parameter discrimination. In this case, each sequential comparison of two models begins with a

previous FSP model that is already solved to a known precision. For example, in Fig. 4.12, we
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plot the FSP error bounds versus the projection size for two Hog-STL1 model parameter sets,
n and i1 . If the likelihood is already known for thBl™" parameter set (horizontal dashed
line in Figs. 4.12(a,b)), then the FSP model for {het+ 1) th parameter set need only be solved
with a projection size corresponding tQ.; . Figure 4.12 represents this minimal nonsymmetric
projection size with black circles. In many cases, such as that shown in Fig. 4.12(b), the new
parameter is worse than the previous case, and the necessary discriminating projection size can be
much smaller than the support of the experimental data. Such situations where the next parameter
set is worse that the current set are the norm in a typical parameter search.
Fig. 4.13(a) shows the likelihood of the experimental data versus two parameters in the Hog-
STL1 model, and Fig. 4.13(b) shows the size of the necessary discriminating projection for the new
n+1 given that the old \ is at the black circle. For new parameters that give smaller likelihoods
than |\ (i.e. those outside of the halo), parameter discrimination can be achieved with projection
sizes that are a fraction of the support of the data. In fact the median projection needed to compare

the old and new models is 70, compared to a data support size of 107.

Iteration N Iteration N+1

log10L(D|D log10L (D|D)
a
g N log1ol (D] N)_ I ol G L\
\67210007
—
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Figure 4.12: Using FSP-bounds to search Hog1-STL1 models) FSP upper and lower bounds versus
projection size for old parametersy 1 and new parametersy . In this case, y is better, and suf cient
discrimination is made ats, which corresponds to the support of the experimental data. (b) Comparison of
the bounds for old parametersy and new parametersy +1 . In this case, reusing the FSP bounds fgr
makes it possible to rejecty +1 at a projection size that is less than the support of the experimental data.
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Table 4.4: Hog model parameters

| | ki | | | kes | ks2 | kaa [ kais [ ko [ ke | ki | ke | |
N 1 | 2.096] 5406.3] 25116.6] 0.00979| 0.00868| 0.0448| 0.465| 9.16e-4| 0.01232] 0.1372] 1.953] 5.53e-3
N | 2.096| 5406.3| 18116.6) 0.00779| 0.00668| 0.0448| 0.465| 9.16e-4| 0.01232| 0.1072| 1.953 | 5.53e-3
N+ | 2.096| 5406.3| 30116.6 0.01379| 0.01068| 0.0448| 0.465| 9.16e-4| 0.01232| 0.1372| 1.953| 5.53e-3
fixed | 2.096| 5406.3| 18116.6] 0.02 | 0.00668| 0.0448| 0.465| 9.16e-4| 0.01232| 0.1072| 1.953| 5.53e-3
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Figure 4.13: Likelihoods and suf cient projection sizes for Hog1-STL1 d##&.The likelihood of smFISH
data for 2500 different parameter combinationskpf andky3. (b) The size of n+1 versus n+1 =

[krs; k23], where y = ". Over most of the parameter space, suf cient discrimination does not require the
full support of the experimental dathl §, = 107).

4.5 Summary and Conclusions

In recent years, substantial interest has arisen to integrate discrete stochastic models with

single-cell experimental data. This has motivated many approaches to solve the chemical master
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equation, including stochastic simulations, moment closure analyses, and the nite state projection
approach. Progress in this arena will continue in the future to open new biochemical processes for
discrete stochastic, computational analyses. However, until now there has been little discussion of
how accurate models need to be in order to adequately interpret experimental data. In this arti-
cle, we have explored the bene t by which careful consideration of experimental data can help to
reduce computational complexity and enable more ef cient and rigorous comparison of multiple
models in the context of experimental data. We have shown that this advance can substantially re-
duce the complexity of model identi cation for single-cell gene regulation models using real data,
and we believe this approach opens new doors for gene regulation models in many pathways and
organisms.

In light of the above results, it would interesting to reexamine other approaches to t stochas-
tic models to single-cell data. For example, a common and highly exible tool for this task is
the stochastic simulation algorithm (SSA [33]). As one runs more and more SSA trajectories,
the collected statistics converge to the solution of the CME, and the computed likelihood of the
data given the model will also converges to the correct value. Unlike the FSP approach derived
here, convergence of the SSA or other kinetic Monte Carlo approaches will not be monotonic,
and long distribution tails can be very dif cult to estimate. However, although the SSA does not
provide a direct computation or bounds on its computational error, one can estimate the rate of
convergence with increasing numbers of trajectories. With these one could imagine that the insight
gained from the optimal redistribution of the FSP error could be adapted to explore sithitac
redistribution methods for the SSA. Such analyses provide intriguing paths for future theoretical
and computational investigations.

Finally, it is now well established that stochastic models can help to better understand single-
cell gene regulatory responses. Here, we have complemented this fact by showing how single-cell
data may inform the design of rigorous and yet more ef cient computational analyses. Together,
these insights offer further motivation for tighter integration and co-design of computational and

experimental investigations of biological phenomena.
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Chapter 5
Fast Parameter Identi cation of Models of Stochastic
Gene Regulatory Networks Using Data-Driven

Radial Basis Function Model Reduction?

5.1 Introduction

The ability to model gene regulatory networks has signi cant rami cations in scienti ¢ elds such

as molecular biology and medicine. When species exist in large numbers, as often encountered
in biochemical engineering, they can be treated as continuous quantities modeled by determinis-
tic ordinary differential equations [52]. However, certain biochemical species of interest such as
RNAs exist only in low copy numbers and the effect of intrinsic noise is signi cant, thus requiring

a probabilistic modeling approach [53].

Temporally-varying populations for many single-cell biological processes can be modeled with
continuous-time, discrete-state Markov processes [54-56]. Each state is the integer vector whose
entries are the number of molecules of all species. Finding the probability distribution over these
states amounts to solving the forward Kolmogorov equation, known in biochemistry as the chemi-
cal master equation (CME [57,58]). The CME is a rst-order, linear, in nite-dimensional system
of ordinary differential equations that describes the time evolution of the probability distribution of
the corresponding Markov process. Analytical solutions to the CME are known only for the sim-
plest models [59]. For more elaborate systems, the total number of states grows exponentially with

the number of species and becomes intractable, a situation known as the curse of dimensionality.

2The ideas presented in this chapter formed the foundations of a later publication titled “Bayesian estimation for
stochastic gene expression using multi delity models." in the Journal of Physical Chemistry B, with Huy Vo as the
lead author. Like the method described in this chapter, the published work uses projection based model reduction,
but focuses on Krylov subspace-based projections that were built from full, expensive FSP evalutions. The work
presented in this chapter uses single-cell measurements to de ne the basis onto which the FSP dynamics are projected,
surpassing any need to fully evaluate the large expensive evalutions.
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For most biological networks, the CME is solved indirectly via sampling trajectories of the
Markov process using the stochastic simulation algorithm [60], variants sucleaping [61], or
continuous approximations such as the chemical Langevin equation [62]. However, these kinetic
Monte Carlo methods have slow convergence and lack strict error control when approximating
entire probability distributions.

Alternatively, one can seek to compute directly the solution of the CME using a model order
reduction method known as the nite state projection (FSP) [63,64]. The principle of the FSP is to
keep only states with signi cant probabilities and discard the rest of the state space, thus effectively
truncating the CME into a nite problem. There are multiple methods for the CME that build on
this principle [65-67]. However, even following truncation, the number of states required by the
FSP may still be huge.

A promising approach to further reduce the FSP is to interpolate on a sparse set of nodes with
interpolants generated by an appropriate family of bases. Multiple interpolation methods for the
CME already exist [68—70], but here we explore the projection of the CME onto a linear space
of radial basis functions (RBF) [71]. RBF interpolation of high-dimensional data is standard in
the eld of machine learning [72—74], and in computational uid dynamics [75] due to their accu-
rate representation of high-dimensional features and their ef ciency and ease of implementation.
Although RBF projection has been demonstrated to reduce the CME [76, 77], we introduce an ap-
proach with which de ne improved RBF centers and shape parameters. Our approach employs a
modi ed version of adaptive residual subsampling [78] to determine RBF bases to capture empir-
ical histogram of single-cell data. We then use these RBF bases to reduce the CME into a smaller,
more solvable system of equations.

For real biological systems, the likelihood of data given a model is computed by compar-
ing CME predictions to measured histograms. Model parameters and their uncertainties are then
inferred by maximizing this likelihood [79] using optimization routines such as Matibis-
search[80] or the Metropolis-Hastings algorithm [81]. Here, we propose a new implementation

of the Metropolis-Hastings algorithm, in which the CME is rst projected onto data-driven RBF
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bases. We show that thiRBF-Metropolis-Hastingapproach signi cantly reduces the runtime in
comparison to standard FSP-Metropolis-Hastings analyses.
A critical challenge in identifying biological models of gene regulation is the enormous parameter
space that arises from a large number of continuously valued parameters. Moreover, certain pa-
rameter combinations may be well-constrained by experimental data, while other combinations are
far less certain. One common approach to parameter estimation and uncertainty quanti cation is
the Metropolis-Hastings MCMC algorithm [81]. Here, we use the Metropolis-Hastings algorithm
to generate parameter distributions for the full FSP model and the RBF-reduced FSP model.
When applied to discrete stochastic models, the most expensive component of the MCMC
approach is the evaluation of the likelihood of each parameter set, which requires a new CME
solution corresponding to each parameter combination. Since a typical MCMC requires a large
number of samples, any speedup in the CME solver would have tremendous impact on the perfor-
mance of MCMC parameter identi cation. Our work seeks to implement this speedup by replacing
the existing FSP solver with the RBF-based method, with the goal of using this method to quickly

approach the correct parameter set.
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Figure 5.1: (A) The generalized two-state bursting gene expression model captures RNA transcription and
degradation for a single gene that can switch between active (ON) and inactive (OFF) states. (B) The genetic
toggle switch model by Gardnet al. consists of two mutually repressing promoters. Cooperative repression

of the promoters is modeled using repressive Hill functions as shown in the text.

(4)
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5.2 Interpolation Using Radial Basis Functions

The FSP truncates the state space of the CME to be nite. However, even the nite state space used
in the FSP can still require an enormous number of states to obtain reasonable model accuracy. In
order to alleviate the state space explosion, we employ projection-based model reduction of the
FSP.

There is a large body of literature that uses projection-based model reduction of the FSP to
improve computational performance. Recently proposed methods are Krylov subspaces, wavelets,
polynomial spaces [65,69, 70] and many others. A useful projection-based model reduction should
allow going back and forth between the original model and the reduced model with ease, and it
should not lose track of important features of the full model in the reduced model through excessive
deformations of the state space. The present work is original in that we allow for the rst time the
use of single-cell data to guide the selection of the basis functions. Our choice of projection uses
a meshless reduction method with radial basis functions. The advantages of the RBF-based model
reduction are the ease of going back and forth between the full and the reduced model using the
RBF projection operator, as well as its accurate representation of the important features of the state
space, even in the reduced model. In this section, we give and overview of RBF interpolation and
discuss a scheme for selecting centers, and describe how the RBF-FSP follows naturally from this

interpolation.

5.2.1 Overview of RBF Interpolation

The curse of dimensionality causes the FSP state space to become extremely large, even for a
small number of species. As a result, computing the probability distributions for such models
is extremely computationally expensive. However, often times the underlying dynamics of the
CME are much less complex than dictated by the full FSP when looking from the perspective of a
suitable basis [82, 83]. It is reasonable to expect that reductions, such as interpolation via change
of basis can retain accuracy, while reducing the computational burden of solving the full master

equation.
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One natural choice of such a basis family is the radial basis function. Radial basis functions
are easily implemented, and scale well with the dimensionality of the function they interpolate
[72,76,77,84]. This makes them very attractive for interpolating the multi-dimensional probability
distributions that result from the FSP truncation to the CME. Although this basis family has been
very recently used in the context of a CME solver [76,77], little has been said about how to choose
the basis parameters to give reasonable accuracy and ef ciency.

RBF interpolation is mesh free, requiring only the choice of RBF centers and of the tuning of
the scaling parameters that indicate the width of the function supports, which are often referred
to as the shape parameters [78]. Though not mathematically fully understood, the practice of
choosing variable shape parameters often results in well-conditioned basis. Our approach is to
choose the RBF centers based upon multi-dimensional probability distributions of discrete, single-
cell data. The algorithm is adaptive, requiring successive steps of re nement and coarsening of
RBF centers and corresponding tuning of the scaling parameter. We then implement adaptive RBF

interpolation for single and multi-dimensional probability distributions that result from the CME.

5.2.2 RBF-Based Reduction of the FSP

The RBF-based reduction of the FSP (RBF-FSP) can be developed as follows. We enumerate the

Each basis centes; can be associated with a vectaqr of lengthn whose entries are given by the

Gaussian function centeredxat as

vi(i) = exp( k xi  xik?=)): (5.1)

We collect these vectors into the radial basis interpolation matrix [vi:::v,], which has
dimensiom r. The interpolation matrix is positive de nite and invertible. Therefores;:::v,
form a basis foR", which we will refer to as theadial basis This interpolation matrix maps the

FSP probability vectop>P to a reduced representatign
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q= ‘'p: (5.2)
Thus, we can de ne a the state matrix for the reduced system,
B= ‘A : (5.3)
The dynamics of the FSP in the radial basis is given by

d
9 =Ba®; a@= "p(O): (5.4)
This reduces the FSP taa r dimensional dynamical system, which we call the RBF-FSP.

5.2.3 Choosing RBF Centers and Scaling Parameters

The choice of RBF centers and of scaling parameters is paramount for the interpolation, yet to
our knowledge no systematic method exists to determine them. In particular, tting a high dimen-
sional probability distribution with different peak heights and widths will require a choice of RBF
centers that is re ned enough to capture all the peaks and adaptive in scale to capture the widths
of the peaks. Driscokt al. suggest a hierarchical multilevel algorithm with local re nement and
coarsening to choose RBF for interpolation in problems with multiple localized features [78]. Fol-
lowing inspiration from the Driscoll algorithm, we implement an adaptive mesh algorithm for the
interpolation of the CME, with two key differences. First, our approach utilizes discrete, single-
cell data to choose the RBF centers, as computing the exact solution to use for interpolation may
be computationally intractable in higher dimensional systems due to the curse of dimensionality.
Second, we are con ned to discretely-valued centers, both by discrete data and discrete-state mod-
els. At each iteration, the algorithm samples the error at new points between the current RBF
centers and accepts or rejects them based upon a prede ned error threshold. Choosing the right
error thresholds is crucial in smoothing-out data using RBF interpolation. If the threshold is too

strict, the interpolant will try to reproduce the noisy characteristics of the data,; if the threshold is
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too relaxed, the interpolant will smooth away relevant features of the data such as multi-modality.
Figure 5.2 shows the results of applying the RBF interpolation re nement algorithm to simulated
data for two different models. In Figure 5.2A, the algorithm is applied to data simulated with the
from the bursting gene expression model (see Figure 5.1A). This interpolation results in a smooth
representation of the data in green with ve RBF centers. In combination with the ve RBFs for the
observable space of MRNA populations, there are two gene states (‘on' and “off'). When applied
to the CME, this RBF with therefore yield a reduced dimensionBahat is10 10. We also
implemented the adapted RBF re nement algorithm to interpolate data simulated with the SSA
for a genetic toggle switch model comprised of two mutual repressors (Figure 5.1B). Figure 5.2B
shows the original data, and Figure 5.2C shows the interpolation of that data on the RBF basis
set. In this case, through systematic re nement and coarsening, 137 RBF centers are suf cient to
capture the two-dimensional joint probability distribution of the toggle model.

The main advantage of the proposed interpolation technique is that it easily generalizable to
more than two dimension. In fact, the number of RBF centers required for interpolation scales
approximately linearly with the number of species to which it is applied. In turn, this reduced
dimension can then alleviate the state space explosion often encountered with complex biochemical
reaction networks. Once the RBF has been identi ed to produce an effective interpolation of the
single-cell data, the same RBF can be applied to reduce the CME model, as discussed in the

examples below.

5.3 Numerical Examples

For each numerical example below, we simulated data using the SSA [60], and we then apply a
modi ed version of Driscollet al. algorithm to the simulated data at a single time point to choose

a basis for the reduced model.

53



(A)

0.08 -
0.07
0.06 -
0.05
0.04 -

0.03

Probability
Ayqiqeqolg

0.02

0.01

(0} 3 X X X
1
-0.01 L L L I L o
0 10 20 30 40 50
Number of RNA

Lacl

Figure 5.2: RBF-based interpolation of simulated single-cell data. (A) For the bursting gene expression
model, we compare the data generated with the stochastic simulation algorithm (SSA) (black) with the ap-
proximation using radial basis function interpolation (green)=atl0s. The ve RBF centers are positioned

at the blue crosses. (B) Data for the genetic toggle switch is generated for 1000 trajectories of the SSA at
t = 4 hrs. We plot the joint probability mass of the two repressors Lacl and(C) The RBF interpolation

for the genetic toggle switch. We use 137 radial basis functions centered at the black dots.

5.3.1 Bursting Gene Expression

The bursting gene expression model arises from changes in the state of a gene's promoter, such as
the binding/unbinding of transcription factors. When the gene is ‘on’, RNA is actively translated

at ratek,. For an RNA molecule, this simple two-state view of a gene can result in a variety of
RNA dynamics depending on the system parameters [85]. This gene regulatory network can be
written by the following set of biochemical reactions describing the state of the@ane RNA

abundance.

R1: G !'6 ,, R2: G,'6

R3: G,'& on+x R4: x!"™ 2

where the propensitias = fwy; Wy, Wz, Wigarew; = Ko, Wo = Ky , W3 = Kk andw, = X .
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Figure 5.3: Parameter sweep with the full FSP (left) and the RBF-FSP (right) for the bursting gene expres-
sion model for 30 time-points from= 0s tot = 10s. Colors correspond to the likelihoods for parameters

k. andk, . Each parameter is varied one order of magnitude above and below the true paramgters
(center of plot).

Data was simulated for 30 linearly-spaced time points betwee@ andt = 10 with the SSA.

Figure 5.2A shows the RBF-based representation (green line) of the simulated data (black line)
with the ve centers selected using the adaptive residual subsampling algorithm. We then tested
2500 different combinations of the transcription r&teand gene deactivation rakg spanning

one order of magnitude above and below the “true' parameter values from which the data was
generated. Figures 5.3A and 5.3B show the resulting log-likelihood values for the data given
the full and reduced models, respectively. In Figure 5.5A, the parameters that maximize the log-
likelihood for the full and reduced models are shown in blue dots and green lines, respectively. The
best parameters identi ed and their associated likelihoods and computationaltignese given

in Table 5.1. As only ve RBF centers were required to represent the data at all times (compared
to the full FSP state space of 80), the time required to identify the paramgtessth a parameter

sweep was much lower than with the full model.

5.3.2 Mutually-Repressing Toggle Switch

For a second test model, we examine the well-known genetic toggle switch circuit of Gardner

et al. [86]. There are two mutually repressive promoter spelaeksand cl (Figure 5.1B) with
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ki(s ') [ ko (s ) | L(Dj ) [tin(s)
Full 9.54 1.30 -9.27e4| 172
Reduced 9.54 1.43 -9.30e4| 16.0
“True" 10.0 1.50 -9.26e4 -

Table 5.1: Parameters identi ed and their associated likelihoods for a parameter sweep over 2500 parameter
combinations fok; andk, with the full FSP and the RBF-FSP.

stochastic interactions. The reactions of this biochemical network are then given by:

R1: 2!" ¢ R2: cl'™ ?
R3: 21" Lacl R4: Lacl!™ ?;
where the propensities = fw;; wy; W,; W,g are given above the arrows, and

Kx
1+ cLacl™

wy = b +

WZ = X CI
ky

ws = h, +
2=y 1+  cI™

w, = y Laclk

With these reactions and the parameters listed in Table 5.2, we simulated data using the SSA
(shown in Figure 5.2B).

We then ran the Metropolis-Hastings algorithm combined with the RBF-FSP solution at each
step to nd the parameter values that maximize the likelihood function. Our results for identifying
the probability distributions for the best parameters using Metropolis-Hastings are in Figure 5.5B
and 5.5C for the full FSP and the reduced, RBF-FSP solutions, respectively. The values of the
identi ed parameters of the genetic toggle switch are in Table 5.2.

We then compare against the parameters identi ed by the usual procedure, where the FSP
stands in place of the RBF approximation. The RBF procedure is almost twice as fast as the exist-

ing technique, while the parameters it identi es are near to the “true” parameter values (Figure 5.4).
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Figure 5.4: Parameter distributions from the Metropolis Hastings search show that the RBF-FSP approaches
true - The 95% (solid lines) and 65% (dashed lines) for the parameter distributions sampled with MCMC
for the full FSP (magenta) and the RBF-FSP (cyan). Single parameter histograms are shown on the diagonal.

Parameter distributions are scaled relative tge such that each exact parameter has a value of unity.

Q/ kx ky yX y L(DJ ) tID(rnin)
True Model 2.20e-3| 1.60-2 | 1.70e-2| 2.1 | 3.8e-4 | -3.022¢e4 -

Reduced Mode| 2.22e-3| 1.65e-2| 1.85e-2| 2.17 | 4.31e-4| -3.114e4 287
Full Model 1.89e-3| 1.46e-2| 1.60e-2| 2.10| 3.46e-4| -3.0871e4| 444

Table 5.2: Parameters identi ed using the Metropolis-Hastings algorithm for the toggle model. Parameters
were selected as the best choices in the latter half of the MCMC chain.

Figure 5.4 demonstrates the ability of the RBF-FSP to identify parameters in the toggle model. The
95% and 65% con dence intervals were computed for the second half of a 100000 iteration-long
MCMC chain which has been thinned to 10000 samples. The parameters are normalized by the

“true" parameter values in Figure 5.4, i.8.=

true
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Figure 5.5: Best ts for the bursting gene expression and toggle models. (A) Simulated data is given by the
black histogram. Modeled probability distributions correspond maximized likelihood of observing the data
L(Dj ). Parameters were identi ed from parameter sweeps using the RBF-FSP (green) or the full FSP
(blue). (B,C) Same as A, except for the toggle model, and using parameters identi ed during 100,000 runs
of the Metropolis-Hastings algorithm.

5.3.3 Toggle Model with Time-Varying Inputs
Next, we consider a special case of the toggle model in which the basal rate of produdiam of
varies in time:

b, = bo(l sin2't ); (5.5)

where! is the frequency of the time-varying input signal. This example demonstrates the use of the
RBF-FSP for time-varying in nitesimal generatois(t) andB (t), in which matrix exponentiation

and Krylov methods are inapplicable, and for which the CME must be numerically integrated, such
as with MATLAB's ode23s . For this example, the RBF centers were selected using a single data

snapshot in timet = 4hr. We then tested 1000 valueslgfin a parameter sweep using the full

FSP and RBF-FSP separately, and the results of this parameter sweep are shown in Figure 5.6. We
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Figure 5.6: Parameter identi cation with a time-varying toggle model and 5000 modi ed SSA simula-
tions. (A) The log-likelihood as a function &f; using the full FSP (blue) and the RBF-FSP (green). The
two approaches agree approximately near the maximum, which coincides with the “true' vijue(Bj
Marginal distributions for simulated data (black) as well as for the model identi ed with the full FSP (blue)
and RBF-FSP (green).

found that when the parameters are such that they closely match the simulated data, the full FSP
(blue line) and reduced RBF-FSP (green line) solutions are in close agreement for their computed
likelihoods (see Figure 5.6A). However, when the parameters are far removed from their correct
values the RBF-FSP computation is much less accurate. The marginal probability distributions
obtained with the best parameters identi ed with both methods are presented in Figure 5.6B. For
this example, we observed computational speedups of more than twenty-fold using the RBF-FSP:
the parameter sweep with the full FSP took 8.33 hr while the search with the RBF-FSP took just
0.37 hr.

5.4 Discussion

When examined at the single-cell level, biochemical processes are subject to single-molecule
events and discrete stochastic phenomena. These stochastic dynamics can be measured using
modern single-cell and single-molecule experiments and they can be described by the chemical
master equation (CME). However, inferring gene regulation parameters from single-cell data re-

quires thousands of CME solutions and enormous computational effort. In this article, we pro-
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posed a means to use single-cell data to de ne a small set radial basis functions onto which the
CME can be projected prior to numerical analysis or parameter inference. We applied this RBF-
reduced CME approach to three example models, including bursting gene expression, a genetic
toggle switch, and a toggle switch with time varying rates. For each, we showed that we could
use simulated data to de ne RBF basis sets that capture the most important dynamics of the CME,
and that using these RBFs as part of the parameter inference scheme could lead to substantial re-
ductions in computational effort. We expect that this approach will be highly valuable to quickly
evaluate stochastic models to compare to single-cell data. Moreover, because the number of RBFs
needed to interpolate higher dimensional data scales linearly with the number of dimensions, it is
envisioned that this data-drive reduction of the CME could provide a key step toward overcoming

the curse of dimensionality in the analysis and identi cation of stochastic gene regulation models.
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Chapter 6
The nite state projection based Fisher information
matrix approach to estimate and maximize the

information in single-cell experiments?®

6.1 Introduction

Recent labeling and imaging technologies have greatly increased capabilities to measure bio-
logical phenomena at the single-cell and single-molecule levels. When conducted under different
conditions, single-cell experiments can probe processes for different spatial or temporal resolu-
tions, for different population sizes, under different stimuli, at different times during a response,
and for myriad other controllable or observable factors [11, 13,16, 87-90]. As these experiments
have become more capable to precisely perturb or measure different biological species, they have
also become more expensive, which imposes a limit on the number and type of experiments that
can be conducted in any given study. Clearly, not all experiment designs provide the same informa-
tion, and different experiments may be “optimal” to answer different questions about the system.
However, the inherent diversity of modern experiments makes it dif cult to intuit which experi-
ments will be most informative and in which circumstances. Computational tools for model-driven
experiment design could help to select more informative experiments, provided that existing tools
can be adapted to overcome the unique challenges presented by single-cell data.

One model-driven approach to optimal experiment design is to us€isher information
matrix (FIM), which describes the precision to which a model's parameters can be estimated for
any particular experiment [14,38,91-94]. To improve estimates of model parameters, the FIM can

be used iteratively in a Bayesian framework by specifying maximally informative experimental

3This work was published in PLoS Computational Biology in 2019.
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conditions, collecting data under these conditions, using new data to constrain parameters, and
using the newly constrained parameters to design the next round of experiments [14,39,41,93,94].
The formalism of the FIM for experiment design has been used to great effect in engineering
disciplines, such as radar, astrophysics, and optics [95-97]. In principle, similar analyses could
introduce a natural feedback in the co-design of single-cell experiments and discrete stochastic
models, but for this to work, accurate analyses are needed to extract more meaning from the data
and to provide better predictions about how biological systems will behave under new conditions.
Experimentally observed cell-to-cell variability has been well demonstrated to provide substan-
tial quantitative insight to constrain and identify the mechanisms and parameters of gene regulation
models [11,13,16,22,42,87-89,98]. Therefore, the FIM analysis for the optimal design of single-
cell experiments should explicitly consider such single-cell variability. Standard FIM analyses
assume continuous-valued observables with Gaussian-distrimgt@sirementoise. However, in
contrast to most classical engineering applications, the distributions of integer-valued RNA or pro-
tein levels across an isogenic cell population can be highly complex and subject to intrinsic and ex-
trinsic variations, with nonlinear interactions that lead to multiple peaks and long tails [9-11, 43].
Because the FIM is not computable for general discrete stochastic processes with non-Gaussian
distributions, computational biologists have applied various approximations to estimate the FIM.
A few recent biological studies use the Linear Noise Approximation [29] to treat single-cell dis-
tributions as Gaussian, which allows for the use of standard Fisher information analyses [38]. This
approach, which we refer to as the LNA-FIM, should be valid for large numbers of molecules,
but it is unlikely to be accurate for systems with high intrinsic noise corresponding to low gene,
RNA, or protein counts. A different approach to estimate the FIM uses the central limit theorem
(CLT) to approximate the sample mean and covariance to be jointly Gaussian and uses higher-
order moments of the chemical master equation to estimate the likelihood of these moments [14].
This approach, which we refer to as the sample moments approach (SM-FIM), should be valid
for large numbers of cells as can be collected in high-throughput experimental approaches, such

as ow cytometry. However, when distributions have long asymmetric tails and sample sizes are
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limited, higher moments become very dif cult to estimate and can lead to surprising model esti-
mation errors [20]. Beyond these few Gaussian assumptions, there has been little work devoted to
improve the design of time-varying single-cell experiments for systems with arbitrary probability
distributions.

In this study, we introduce a formulation of the Fisher information for use with discrete stochas-
tic models and data sets containing intrinsic variability that is measurable with single-biomolecule
resolution. Our approach utilizes the nite state projection (FSP) approach [27] to solve the chemi-
cal master equation (CME) [28, 29], and compute the likelihood of single-cell data given a discrete
stochastic model [11,22,43]. The FSP solves for the probability distribution over discrete numbers
of biomolecules to any arbitrary error tolerance. By utilizing the full probability distributions, as
opposed to nite order or approximate moments of these distributions, our approach makes no
assumptions and works well for distributions with multiple peaks or long tails.

In the next section, we introduce the FSP and derive the sensitivities of the FSP solution to
small perturbations in parameters. Next, we derive the likelihood function and its local sensitivity
for discrete stochastic models and discrete data. These allow us to formulate and compute the
FSP-FIM. Next, we use a combination of analytical results and numerical simulations to verify the
FSP-FIM for two common models of gene expression. Finally, we demonstrate how the FSP-FIM

can be applied to design nontrivial experiments for a simulated system with nonlinear reaction

rates.

6.2 Derivation of the Fisher Information for FSP Models

The FIM, which describes the amount of information that can be expected by performing a

particular experiment witlN, cells, is de ned as

n (0]
1( )= NeE (r logp(X; )T (r logp(X; )) ; (6.1)
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where the expectation is taken oy#X ; ), corresponding to the density from which future (or
hypothetical) data could be sampled. For FSP models, this density is the discrete distribution found
by solving Eg. 2.3. Equation 6.1 is positive semi-de nite and is additive for collections of inde-
pendent observations [91]. The inverse of the FIM is known as the Crameér-Rao bound (CRB),
which provides a useful lower bound on the variance for any unbiased estimator of model param-
eters [92]. The notion of information stems from the fact that new experiments should increase
the FIM, corresponding to additional knowledge aboutnd a tighter CRB. More speci cally,

the well-known asymptotic normality of the maximum likelihood estimator (MLE) states that as
the number of measurements increases, the MLE estimates will converge in distribution to a

multivariate normal probability density with a variance given by the CRB,

"N O @)Y 6.2)

where” is the that maximizes Eq. 3.1 and are the “true" model parameters that produced
the observed data [91, 92]. Designing experiments to maximize a given metric of the FIM can be
expected to provide a more accurate estimate, athere different de nitions of "accuracy’ (i.e.,
different vector norms for parameter errors) can be implemented through the choice of different
FIM metrics.

To derive the FIM requires one must take the partial derivative of the log-likelihood (Eg. 3.1)

with respect to the parameters

0 1
1@p 10@p 1 @p
Po @1 Po @2 Po @nyp
1@ 1@p ... 1 @p
r logp(X; )= pL @1 p1 @2 P @nyp : (6.3)
1@ 1@ ... 1 Op
PN @1 pn @2 TT7 pn @ny

The expression p(X; ) is thesensitivity matrixS, which has dimensionld N , whereN is

the dimension of the CME or its FSP projection. We derive an equation similar to that presented
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in [99] to de ne the time evolution of the sensitivity for each state's probability dengity, ),

to each parameter. However, unlike previous analyses that rely on stochastic simulations and
nite difference approaches, the FSP enables direct approximation of the sensitivities. Using the
sensitivity matrix, the entries of the FIM can be computed as:

( . )

1
S” S|j . (64)

O = RE )

Taking the expectation over dlbn (1; N) yields the elements of the FIM:

X 1 2
()i = N o0 ) Si S p(xi; );
=1 ’
g
= N¢ msli Si; (6.5)
=1 ’

which quanti es Fisher information for the model evaluated at a single time point. For smFISH
data, each time point is independentNif(t) cells are measured at eakh time point, the FIM
is summed, and the total information is computed as:

MWt

b\
1( )y = Nc(tk) L

WSH (tk) Sij (t): (6.6)
k=1 I=1 T

The Fisher information can be found using Eq. 6.6 for any model for which the FSP (Eq.
2.3) can be solved. This formulation explicitly quanti es how the number of cells and number
of time points impact the information, and is easily extended to include other experiment design
aspects such as the interval of successive measurements or changes in applied inputs, as we will
demonstrate in the following sections. Because one is often interested in the relative sensitivity
of parameters rather than the absolute sensitivity, a logarithmic parameterization of the FIM can
easily be obtained from Eq. 6.6.

h i
1(10g )= E I g logp(X; ) I g logp(X; ) (6.7)
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The logarithmic parameterization carries through to the computation of the sensitivity matrix,

0 1
1_@p 1_@p ... 1 __@p
Po@og 1 po@og 2 "7 po@og nj
r |Og p(X; ) — p1 @og 1 p1 @log 2 p1 @og N, : (68)
1 @R 1 _@n ... 1 _@n
Pn @og 1 pn @og 2 "7 py @og N,

Using the relationshigfo) = x 282, we can rewrite Eq. 6.8 as

I’Iog Ing(X; ): QS ; (69)
where
0 1
1 0 2 0
ao > .. 0
o ::: Np

andQ = diagf %g. Therefore, the logarithmic parameterization is easily found by multiplying the

i column inS by the corresponding parametgr The log-FSP-FIM can then be computed:

| X i k
I (lo i = N Si
( g ) J o p(Xk, )

SJ!( = jl ( )ij . (610)

In the following sections, we will verify the FIM using several common models of gene ex-

pression, and demonstrate experiment designs using these approaches.

6.2.1 Derivation of information for Gaussian uctuations

The Gaussian distribution with mean and variands de ned
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(x_)?

f(x; )= p;:e z . (6.11)

Computing the FIM for this Guassian requires nding the derivative of the log-density

1 1 1 x2 2 + ?
logf (x; )= EIogZ Elog > T (6.12)
with respect to ,
@ogf(x; ) _ 1 1 X2
e 2
1, x2 1
= E( —+ —+1)
and squaring it:
. 2 2 2
M = 1' X_ + E +1 X_ + :_L +1
@ 4 2 2
1 x* 22 x* 1 2
:Z X—4 -3 —2+—2+—+1 . (613)

To take the expected value, we need the second and fourth moments of the normal distribution,
which are 2+ for the second uncentered moment afid 6 3+ 3 2 for the fourth uncentered

moment. Thus, we have:

Eh @ogf (x; ) ? _

446 343 2 2(%+ ) 2(2+)+1 2
@

—+ =+
4 3 2 2 1

4 2 1 1
-+ = =T+
2 2 2

O N

6.2.2 Derivation of information for a Poisson distribution

The Poisson distribution is de ned:

Xe
X!

f(x; )= (6.14)
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Again, by taking the log
logf (x; )= xlog logx! (6.15)

Now, take the derivative with respect to

@ogf(x; ) _ x
—a - 1; (6.16)

and squaring this term yields:

. 2
@ogé)(x, ) 2 x LY (6.17)

As the FIM is the expected value of this quantity, and the mean and variance of the Poisson distri-
bution are given by,
h @ng (X, ) 2i hXZi h2x|

E g =ES ET 41

o (6.18)

6.3 Derivation of sensitivities for FSP models

The change of probabilitp(x;) with respect to small changes in parametedescribes the
sensitivity of thel™ state in the Markov process to th@ parameter [99, 100]. These local sen-
sitivities can be calculated by transforming the linear ODEs describing the time evolution of the
probabilities of the state spac%p(t) = f p(t); ;t into a set of ODEs describing the time
evolution of the sensitivities. Given an initial condition, the solution to the CME is:

Z t
p(t; )= p(t)+ f(p(s; ), ;9)ds (6.19)

to
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Taking partial derivatives with respect tQ

Zh i
rop(t )= r f(p(s; ); ;9)+rpf(p(s; ); ;s)r p(s; ) ds: (6.20)

to

We can now describe the sensitiviti8s r p as they evolve with time, by taking the time
derivative of the equation above. For the FSP, the right-handfgiplé; ); ;t) = A( ;t)p(t),

and

rofp ) )=>r AC)p®) (6.21)

ref(tpt; ) )=A() (6.22)

In many cases, including all models formulated using mass-action kinetics, the geAecaioibe
P
written as a linear combination of the model parametersAi.e. B, and the derivative with

respect to thé" parameter can be found,

@ @

—A = —( iBi): Bi: (623)
| |

Using this notation, Eq. 6.20 is reduced to the set of linear ODEs for each parameter

0 1 O 10 1

BPUc B OgrPig. (6.24)

d
dt " (1) Bi A Si(t)

In practice, Eq. 6.24 can be computed in parallel for each parameter, and the computation of
sensitivities forK parameters is equivalent to solviKg sparse systems of ODESs, each twice the

size of the FSP computation.

6.3.1 Moment-based FIM Approximations

Current state-of-the-art approaches for single-cell, single-molecule experiment design rely on

computing moments of the CME. Approaches that use ODE reaction kinetics (in a deterministic
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model setting) [101-103], linear noise approximations [38, 41], or higher order moments [14] all

make use of the well-known Gaussian form of the FIM

;
_ @ 1@ }trace 1@ .@ ;

My = e T2 @ @

(6.25)

In the higher order approach, developed by Ruess et al [14] takes the sample mean and sample
variance to be jointly Gaussian, and thus requires the computation of up to the 4th moments in Eq.

2.11.

6.4 Verications and applicationss of the FSP-FIM

6.4.1 The FSP-FIM captures the exact information for constitutive gene ex-

pression
To demonstrate and validate the FSP-FIM method, we begin with a simple birth and death
model for constitutive gene expression as shown in Figure 6.1. This model, which has been t
to capture the variability for many housekeeping genes [87, 98], consists of two reactions, corre-

sponding to the constant transcription and rst order decay of RNA,

R1: gend ke gene+ RNA

R2: RNA!':

The production and degradation parameters are de ned=apk;; ].
Given an initial condition of zero RNA for this process, the population of RNA at any later
time is a random integer sampled from a Poisson distribution,

Xe
x!

p(x; )= ; (6.26)

where is the time varying average population size,
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Figure 6.1: Fisher information for a model of birth and deatfihe Fisher information for the two model
parameter&; (a) and (b) for various values of the mean expression levelThe analytical form of the

FIM for a Gaussian approximation and that computed using Eq. 6.25 (purple line) match to one another. The
value computed using the FSP-FIM (blue) matches to the exact form of the analytical Poisson distribution
(orange dashed). Asbecomes large, all four approaches are consistent.

(ke )= 11 exp( ) (6.27)

We have chosen the constitutive gene expression model to verify the FSP-FIM because the exact

solution for the Fisher information for Poisson uctuations can be derived in termsasf[91]:

| —

(6.28)

| Poisson( )

Figure 6.1 shows the exact value of Fisher information (orange) versus the mean expression level
for the two parameterk, and . Figure 6.1 also shows that the FSP-FIM (blue) matches the
exact solution for the information on both parameters at all expression levels, which veri es the
FSP-FIM for this known analytical form.

Having demonstrated that the FSP-FIM matches to the exact solution, it is instructive to com-
pare how well the previous LNA-FIM and SM-FIM estimates match to the exact FIM computation.
For the Poisson distribution, the mean and variance are both equaldsing this fact, the FIM

can be approximated using the LNA-FIM for normal distributions (see Eqg. 6.25). This expression

reduces to
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="+

InG ) 2—12; (6.29)

when both the mean and variance ards becomes large, the Poisson distribution becomes well
approximated by a normal distribution [92]. Equations 6.28-6.29 show that for this limit of large

the rstterm in Eqg. 6.29 dominates, amg reduces td peisson, Yielding nearly equivalent values

for the expected information. However at low mean expressionl, the strictly positive Poisson

and the symmetric Gaussian distributions are less similar, and the Gaussian approximation predicts
more information than is actually possible given the exact Poisson distribution. These trends are
shown in Fig. 6.1, where the LNA-FIM approach only matches to the exact solution at high ex-
pression levels (compare orange and purple lines). For this example, the sample-moments based

FIM (SM-FIM) is exact and matches to the analytical and FSP-FIM solutions at all expression

levels [14].

6.4.2 The FSP-FIM matches the simulated information for bursting gene

expression

Next, we consider a slightly more complicated model of bursting gene expression, in which
a single gene undergoes stochastic transitions between active and inactive states wikfy rates
andk, . This switching model, which is depicted in Fig. 6.2(a), has been studied in detail [98,
104-110], and it has been used to capture single-cell smFISH measurements in mammalian cells
[107,111], yeast cells [11, 106], and bacterial cells [112]. When active, the gene transcribes RNA
with constant raté&, and these RNA degrade in a rst order reaction with rat@he four reactions

of the system are:
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R1: ! Oon (6.30)

R2: Gl G (6.31)
R3: Gon!“ oo+ RNA (6.32)
R4: RNA'; (6.33)

For the examples below, we use the baseline parameters giveky, by 0:05 min 1, k, =
0:15 min 1, k, =5:0min !, and = 0:05min *. In particular, the mMRNA degradation rate,
which sets the overall time-scale, was chosen to be representative of the average decay times
(approximately 20 minutes) for mRNA in yeast [113].

For the bursting gene expression model, rescaling the transitiorkiatesdk, by a common
factor does not affect the mean expression level, because the fraction of time spent in the active

state remains unchanged. This fraction can be written

f kon — kon .
on kon'*'ko kon+ko’

(6.34)

and is the same for any> 0. For the parameters given above, the average expression at steady
state is given bk, f,,= = 25. However, rescaling the transition rates does change the shape of
the distribution as shown in Fig. 6.2(b-d) [98]. When switching is slow, the gene stays in the “on”
and “off" states long enough to observe individual high and low peaks corresponding to the “on"
and “off" states, as in shown in Fig. 6.2(b). However, for intermediate switching rates, the gene
does not spend enough time in the “off" state for bursts to decay or enough time in the “on" state for
large populations to accumulate (see Fig. 6.2(c)). At fast switching rates the “on" and “off" states
come to a fast quasi-equilibrium, and the time-averaged system approaches a Poisson process,
where the effective production ratekisf ,,. For the bursting gene expression model, all moments

of the distributions can be computed exactly from Eq. 2.11, even when the RNA distributions are

highly non-Gaussian [12].
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Figure 6.2: Bursting gene expressiolfa) Schematic of the standard bursting gene expression model. Pa-
rameters are de ned as given in the text to yield an “on" fraction of 0.25 and a mean expression of 25
MRNA per cell. (b) At slow switching rates, unique “on" and “off" modes are apparent, and distributions of
molecule numbers are bimodal. (c) For intermediate switching rates, the distributions are geometric. (d) At
high switching rates, the distributions are nearly Poisson (d). For each switch rate scale (labeled I, II, or III),
the distribution of RNA computed with the FSP (blue) is compared to a Gaussian with the same mean and

variance (purple).

Since the previous example has already veri ed the accuracy of the FSP-FIM when the expres-
sion has a Poisson distribution, we now verify the FSP-FIM for the slow switching case in which
the distribution is bimodal ( = 0:1). To our knowledge an exact FIM solution is not known for
the bursting gene expression model, so we evaluate the different FIM approximations by nding

the sampling distribution of the MLE, and we compare the covariance of this distribution to the
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Figure 6.3: Veri cation of the FSP-FIM for models with non-Gaussian distributioffhe inverse of the

FIM is a lower bound on the variance of the MLE estimator. Here, we simulate 200 data sets with 1,000
cells in each data set. We then nd the MLUE(scatter plots) for each, and compare the covariance of
these samples to the inverse of the FIM for the (a) FSP-, (b) LNA-, and (c) SM-FIM approaches. Panel (d)
shows the FIM matrices for all approximations on the same axes. Simulated data were generated using the
parameters given in the main text and at 10 time points evenly distributed between 0 and 200 minutes.

inverse of the FIM [92]. To do this, we sample frquX ;t; ) under reference parameter set

to generate 200 simulated data sets, each with independent RNA measurements for 1,000 cells.
We then allowk, andk; to be free parameters, and we fidor each of the 200 data sets. Figure

6.3 compares the 95% con dence intervals found by taking the inverse of the FIM and through

MLE estimation using simulated data for the FSP likelihood (Eg. 3.1) shown in Fig. 6.3(a), the
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LNA-based likelihood (Eqg. 3.3 in the Methods section) shown in Fig. 6.3(b), and the SM-based
likelihood (Eq. 3.3 in the Methods section, Supplementary Eqg. 10) shown in Fig. 6.3(c). Figure
6.3(a) shows that the CRB predicted by the FSP-FIM matches almost perfectly to the con dence
intervals determined by MLE analysis of independent data sets. Figure S3 (left column) shows
that this estimate is consistently accurate over multiple different experiment designs. In contrast,
the LNA-FIM dramatically overestimates the information and predicts con dence intervals that
are much smaller than are actually possible (Figs. 3(b) and S3, center column). The SM-FIM does
a better job than the LNA in that it matches the MLE analysis for some experimental conditions
(Fig. 6.3(c)) but much less well for other conditions (Fig. S3, right column). We note that the three
different FIM estimates yield different principle directions and different magnitudes for parameter
uncertainty (Fig. 6.3(d)), but in all cases the FSP-MLE matches to the FSP-FIM and results in the
tightest MLE estimation.

Having veri ed the FSP-FIM for the bursting gene expression model with multiple parameter
sets, we next explore how the information changes as a function of the system parameters. Figure
6.4 shows the determinant of the FIM (also known as the D-optimality or information density)
for the bursting gene expression model as a function of the switch rate scaling factming
the LNA-FIM (purple), SM-FIM (green) and FSP-FIM (blue) approximations. In the limit of
fast switching (i.,e. ! 1 ), the expected information converges to nearly the same value for all
approaches, as expected for a Poisson distribution with high effective population size 5
RNA. However, in the non-Gaussian regimes with slow switch rates, the LNA-FIM over-estimates
and SM-FIM under-estimates the information compared to the veri ed FSP-FIM approach. We
note that these differences arise despite the fact that the bursting gene expression model has linear

propensity functions, which allows for closed and exact computation of the statistical moments.

6.4.3 The FSP-FIM Can Design More Informative Single-Cell Experiments

Next, having veri ed the FSP-FIM for its ability to accurately estimate the FIM for different

parameter sets, we explore the use of the FSP-FIM to design experiments that maximize infor-
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mation. Speci cally, we will use classical FIM-based experiment design approaches to choose
single-cell experiments rst for the bursting gene expression model above, and then for a nonlinear
toggle model for which moments can no longer be computed exactly. We consider two different
metrics of the FIM, which are frequently used in model-driven experiment design [14,93]. The
rst of these is E-optimality, which corresponds to the smallest eigenvalue of the FIM. By nding
the experiment which maximizes this eigenvalue, the information is increased in the principle di-
rection of parameter space in which the least information is known (i.e. the parameter uncertainty
is highest). The second FIM criteria is D-optimality, which corresponds to the determinant of the
FIM. By maximizing the determinant of the FIM over the experiment design space, one nds an
experiment which minimizes the volume of the uncertainty in parameter space. We note that many
other experimental design criteria are possible, and the choice of criteria depends on what one
desires to learn about the system.

Optimizing the sampling rate for bursting gene expressionOur rst demonstration of FSP-
FIM based experiment design is to select the optimal single-cell sampling period with which to
identify the parameters of the bursting gene expression model. For this, we have chosen to analyze
E-optimality criteria, which seeks to maximize the smallest eigenvalue of the FIM. We consider a
potential experiment design space consisting of 60 logarithmically distributed sampling petiods
from2 10 ?minutesand 10’ minutes. For each sampling period, a total of ve evenly spaced
temporal measurements would be taken. Figure 6.5(a) compares the information expected versus
the sampling period using the different FIM approximations: LNA-FIM (purple), SM-FIM (green)
and FSP-FIM (blue). For each potential experiment, we then simulate 200 data sets for 1,000 cells
each by sampling(X;t; ), use Eq. 3.1 to nd the MLE parameter estimate for each data set,
and then compute the covariance matrix from the MLE parameter sets. This covariance matrix is
inverted, and its minimum eigenvalues are depicted as orange triangles in Fig. 6.5(a). Figure 6.5(b)
also shows a scatterplot to compare the relationship between the MLE-observed information and
the predicted information for all FIM approaches. Once again, the FSP-FIM consistently matches

the observed E-optimality at all experimental conditions. However, the LNA approach is much less
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consistent, sometimes over-estimating and sometimes under-estimating the real information for the
different experimental conditions. The SM-FIM consistently underestimates the true information
for this example, although it is not clear if this trend would hold for all sets of parameters and

experimental conditions.

det{FIM}
|—I
S

107
1073 101 101 103

Switching rate, o

Figure 6.4: FIM analysis of the bursting gene modélhe determinant FIM for the LNA-FIM (purple),
FSP-FIM (blue), and SM-FIM (green) as a function of the gene switching rate scaleabels I, II, 11l
correspond to the switch rates for which distributions are plotted in Figs. 6.2(a-c). Parameters are given in
the main text and data are assumed to be collected at 10 equally separated time points between 0 and 200
minutes.

From Fig. 6.5(a), it is clear that the amount of expected information depends strongly on the
sampling period. When the sampling period is much longer than the characteristic time to reach the
steady state distribution ¢ 1= ), the information does not change because all snapshots are al-
ready close to steady state. When the sampling period is too short (1= ), there is insuf cient
time for the distributions to change and the information tends to zero. Despite conserving these

trends, the three different FIM analyses result in substantially different optimal experiments for
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Figure 6.5: Designing experiments with the FSP-FIk&) E-optimality (i.e., smallest eigenvalue of the

FIM) for the standard bursting gene expression model versus sampling petipdsing FSP-FIM (blue),
LNA-FIM (purple), and SM-FIM. Maximizing E-optimality corresponds to minimizing variance in the in

the most variable direction of parameter space. The orange triangles show MLE-based con rmation of the
E-optimality, using 200 simulated data sets for each sampling period. The green shaded region represents
experiments that are feasible using smFISH, from minute resolution [11] to hour resolution [112] (b) Com-
parison of the FSP-FIM (x-axis) versus the observed information (y-axis) for various sampling periods using
the FSP-FIM (blue circles), LNA-FIM (purple squares), and SM-FIM (green crosses). Kinetic parameters
are given in the main text.

the E-optimality design criteria. Using the FSP-FIM, the optimal experiment is 6:1 minutes,

which we veri ed using the MLE sampling approach (compare orange triangles and blue line in
Fig. 6.5(a)). This optimal design is well-aligned with smFISH experimental technique, which can
capture cell populations with one minute resolution [11] to one hour resolution [112]. However,
the LNA-FIM selects a much faster sampling period df= 1:1 minutes, and the SM-FIM selects

a much slower sampling period oft = 420 minutes. Thus, the FSP-FIM not only provides more
information compared to moments-based approaches, but it also provides a better estimate of the
expected information. In turn, these improved estimates can help to avoid potentially misleading

experiments and select optimal designs.

The FSP-FIM accurately estimates information for systems with nonlinearities and bi-
modal responsesTo demonstrate the utility of the FSP-FIM approach for models with nonlinear
reaction propensities and multiple species, we turn to the toggle model rst introduced by Gardner

et al [48], with a stochastic formulation by Tian and Burrage [49]. Figure 6.7(a) shows a schematic
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Figure 6.6: Optimal experiment design for the bursting gene expression model using the determinant of the
FIM, D-optimality. (a) The D-optimality criteria for the FSP-FIM (blue), LNA-FIM (purple) and SM-FIM
(green) for different sampling periodst. Orange triangles represent the D-optimality con rmed using 200
simulated data sets for each potential sampling period. Optimal sampling periods are given by black circles.
(b) Comparison of the FSP-FIM at the the reference parameter set (x-axis) and the observed information (y-
axis) for various sampling periods using the FSP-FIM (blue circles), LNA-FIM (purple squares), and SM-
FIM (green crosses). Kinetic parameterslae= 0:05min %, kot = 0:15min 1, k, =5 moleculesmin,

and =0:05min 1,

of the toggle model, which consists of two mutually repressing protgins,Lacl andy cl,
where the production of each species depends non-linearly on the concentration of its competitor.

The reactions in the toggle model can be written

R1:;!" x; R2:x!" ; (6.35)
R3:; 1™y, R4:y!"™;; (6.36)
where
W_Q+L' Wy = X (6.37)
1— 1+ yxy o ! 2 = XNy .
— ky . — .
ws = b, + m ws = (UV)y: (6.38)

In this formulation, we have assumed that the degradationlofis controlled by an ultraviolet

(UV) radiation through the light-induced circuit described by Kobayashi et al [114]. Similar to
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Figure 6.7: Validation of a toggle model(a) Model schematic of the two gendacl and cl, which are
mutually repressing [48]. Degradation afl is controlled by UV radiation. (b) Veri cation of the FSP-FIM
(black ellipse) for 200 MLE estimates of 1,000 cells each (black dots) for two free model paramejers,
andby.

[30], we assume that the UV level affects the degradatiorcbficcording to the function:

0:002UV?

Uuv)=3:8 10%+ ——— _:
y(UV) 1250 + UV3

(6.39)

where the minimum degradation rate has been chosen to match dilution dudstactiiehalf life
of 30 min [30]. The remaining parameters used for this example are givenibyTable 6.1. The
system’s initial condition at = 0 is assumed to be the equilibrium distribution when no UV is
applied. For this biological system and these parameters, different levels of UV radiation will give
rise to different dynamics. At low levels of radiation, switching to the high Lacl state is rare, and
the distribution tends to have a single peak. At intermediate levels of radiation, switching between
low and high levels of Lacl expression is possible, and Lacl distributions may be bimodal. Finally,
at high levels of radiation, the system very quickly switches into the high Lacl state.

Because this model has complex nonlinear propensity functions, the statistical moments cannot
be calculated in closed form, and the LNA-FIM and SM-FIM estimates are no longer expected to
provide accurate estimates for information or optimal experiment designs. In contrast, the FSP

analysis remains unchanged, and the FSP-FIM can be computed exactly as above. As before, we
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Figure 6.8: Experiment design for the nonlinear genetic toggle mo¢sl.Degradation rate ofcl is con-

trolled by UV as shown in Fig. 6.7(a). The magnitude and duratigro{ UV exposure are free experiment
design parameters, along with the time between measurementgh) E-optimality (the smallest eigen-

value of the FIM) versus the 3-dimensional experiment design space, where the FIM is computed using
(b) the reference parameter set, (c) by averaging the E-optimality over 100 unique parameter sets and (d)
using the “true" parameter values. The black circle is the optimal design chosen according to (c). The black
triangle denotes a nearby, but less informative, experiment. (e) For the experiments corresponding to the
black circle and triangle in (b-d), E-optimality values are shown for each sampled parameter set.
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verify the FSP-FIM for this nonlinear case using a set of 200 simulated data sets measured at 1 hr,
4 hr, and 8 hr, each with 1,000 cells, and we found MLE parameter estiméesach simulated
data set. Figure 6.8(a) shows this veri cation in a simple case with two free paranigters]

xy» and Fig. 6.9 shows the veri cation where all parameters free except for Hill coef cigpts
and . In this and all subsequent analysis of the toggle model, we have used the logarithmic
parameterization of the FIM (Eq. 6.10).

Next, we aim to design more complex experiments for the toggle model described above. We
consider an experiment design space where the measurement sampling péeripdlse duration
( ), and pulse magnitude (UV) can all be changed, as illustrated in Fig. 6.8(a). Each pulse of UV
starts at = 1 hr. We then compute the FSP-FIM for each experinhéht; ; tg.

To capture the more realistic situation where parameters are unknown prior to experimentation,
we next explore how parameter uncertainty affects the estimation of the FIM and the design of
optimal experiments. To begin, we assume that parameters have been partially estimated from a
simple initial experiment corresponding to measurements of the unperturbed steady state at zero
UV input to the system. In practice, similar preliminary parameter estimates could be acquired
from literature, from previous less-optimized experiments, or by comparison to related pathways
or organisms. For our analysis, the prior estimate for parameters is described by a multivariate
lognormal distribution with a geometric meanof given in Table 6.1. Parameters sampled from
this distribution are substantially different from the “true” parameter,which is also shown in
Table 6.1. Figure 6.8(b) shows the E-optimality criteria for paramete’?(sas a function of the
experiment design parametdrdV; ; tg. Next, we sampled 100 random sets of parameters
from the prior distribution (Fig. 6.10), and we computed the E-optimality for each set. Figure
6.8(c) presents expected information versus experiment design averaged over these 100 parameter
sets. For comparison, Fig. 6.8(d) shows the information versus experiment designs if one had exact
knowledge of the true parameters.

From Figs. 6.8(b-d), we observe that relative estimates of the FIM remain consistent despite

substantial changes to the parameters from which the FIM is computed. To explore this observa-
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Table 6.1: Parameters for the toggle model. is the “true" parameter set from which data is generated,
and”g is the MLE parameter set tto a baseline data set generated assuming 0 UV (see Fig. 6.10 for further
discussion). Here\ is used to denote the units of single-molecules.

Q g | Sipgle experignent gDual greedy | g Dual gimglltaneous g

< = < 2hr = < 4hr = |< 1lhr = < 4hr =

_ - 3hr ~ 55hr | 25hr ,  25hr

uv ’ " 9J=m?’ " 14J=m?’ | 9J=m?’' = 13J=m?’
E-opt 149 320 36.8

Table 6.2: Comparing sequential experiment design approaches.

tion more closely, we selected the experiment that maximizes the averaged E-optimality in Fig.
6.8(c). This experiment is denoted by a black circle in Figs. 6.8(b-d), and we compare it to an-
other similar experiment design, shown by the black triangle in Fig. 6.8(b-d). Figure 6.4.3 shows
the expected parameter uncertainty for these two designs and shows that the optimal experiment
reduces variance in some parameter directions by more than an order of magnitude compared to
the sub-optimal experiment. To explore how different parameters change the ranking of these two
experiments, we analyze the ranking of Experiment A and Experiment B not only based on their
average E-optimality value as in Fig. 6.8(c), but at each of 100 random parameter combinations.
Figure 6.8(e) shows that for 97 of the 100 parameter samples, the relative ranking of the experi-
ments is consistent, even though the absolute value of the E-optimality criteria varies over several
orders of magnitude.

The analysis shown in Fig. 6.8 assumes a xed initial distribution=a0, which was speci ed

by the steady state distribution under the true parameters in the absence of UV radiation. Under this
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Figure 6.9: Veri cation of the FSP-FIM for the seven free parameters for the toggle model. Each black
circle corresponds to the logarithm of an MLE estimasbeg,” for 100 different simulated data sets. The
gold circle corresponds to the reference parameteldagt, . The 95% ellipse corresponding to the log-
FSP-FIM is shown in black. The tilde corresponds to the log of each parametéy, £dog by .

assumption, the initial sensitivity matr&(0) in Eqg. 6.24 was set to zero. Figure 6.12 extends the
analysis to compute the initial sensitivi8/, (0) = @=@; at steady state, which slightly increases

the estimate of information for the early time points, but has relatively little effect on the choice of

optimal experiment design.
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Figure 6.11: (a) The eigenvalues of the inverse of the Fisher information (i.e. the CRB) for the two experi-
ments in Fig. 7(c) in the main text. Note that the y-axis is on a logarithmic scale. Lower values correspond
to lower parameter uncertainty. (b) The effect of Experiment A and B on standard deviatiogs of

We next seek to understand how optimal experiments depend on one's plans to perform mul-
tiple experiments. The “single experiment” in Table 6.2 refers to designing a single experiment,
E;, to maximize the expected FIM design criteria, such as nding the maximal combination in
Fig. 6.8(c). The “dual greedy" approach also chooses the &rmaed then seeks to nd the most
complementary additional experimeii, to maximize the overall FIM design criteria. Finally,
the “dual simultaneous” search nds the optimal combination of any two possible experifients,
andE, to maximize the design criteria. Since the optimal choiceéSoandE, can admit the other
choices, it must yield at least as high a design criterig,andE,. By comparing the three design
strategies for the current toggle model, we nd indeed that the simultaneous approach discovers
a substantially more informative experiment than does the greedy approach. In other words, the
overall expected value of an experiment, can depend not only on the current parameter values, but
also upon which other experiments one intends to conduct. If one has plans to do multiple experi-
ments, it may be better to consider the potential information from all experiments as a whole rather

than to design each experiment one at a time.

87



A . -
Pulse duration, 3 -.";p
NS ——~— 101 ° {/
S : o
% 8“ 0 oq /,0’.:
L = e
1 1 1 1 ; /”
Sampling period, At t

10° E-opt B 10!
(b)  g—10m] g=20m] p=30h]  5=4.0h] 589
6 1 Refer 1 1 6 .
para 19.5
4
10.1
2.
19720
OF | ©
13.03 O
o 5
- 6.87
32 :
070 =&
. 0.50 =
(d) True
4 |paramete 41 0.33
0.17
2 21
5 1,0 0.00
UV.J/m?

Figure 6.12: Toggle model experiment design with non-zero initial sensitivities (a) Degradation rate of

cl is controlled by UV as shown in Fig. 7(a). The magnitude and duratiyrof UV exposure are free
experiment design parameters, along with the time between measurenie(ti} E-optimality (the smallest
eigenvalue of the FIM) versus the 3-dimensional experiment design space, where the FIM is computed using
(b) the reference parameter set, (c) by averaging the E-optimality over 100 unique parameter sets and (d)
using the “true" parameter values. The black circle is the optimal design chosen according to (c). The black
triangle denotes a nearby, but less informative, experiment. (e) For the experiments corresponding to the
black circle and triangle in (b-d), E-optimality values are shown for each sampled parameter set.
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6.5 Discussion

Fluctuations in biological systems complicate modeling by introducing substantial variability
in gene expression among individual cells within a homogeneous population. This variability
contains valuable and quanti able insights [98], but data with multiple peaks and long tails, such
as those collected using smFISH, are often poorly described by modeling approaches that only
make use of low-order moments of such distributions [20]. The FSP approach [27] has previously
been used to identify and predict gene expression dynamics for complex and rich single-molecule,
single-cell data [11,111,112]. In this work, we have developed the FSP-based Fisher information
matrix, which extends the FSP analysis to allow rigorous design of experiments that are optimally
informative about the model's parameters.

The FSP-FIM uses a novel sensitivity analysis, which requires solving a system of ODESs that
is twice the size of the FSP dimension for each parameter, and therefore should be computationally
tractable for any problem to which the FSP can be applied. The local sensitivity of each parameter
is independent of the other parameters, so the computation is easily parallelized among multiple
processors. We veri ed that the FSP-FIM approach matches the information for the constitutive
gene expression model, whose response follows a Poisson distribution (Fig. 6.1), and for which
the FIM can be computed exactly. The FSP-FIM also matches to classical FIM approaches that
assume normally distributed data (LNA-FIM) or very large data sets (SM-FIM) in the limiting
case when the data distributions are close to being Gaussian (Figs. 6.1-6.4). For systems where
data is not Gaussian and for which there is no exact FIM formula, we showed that the FSP-FIM
is more accurate than traditional approaches (Figs. 6.4, 6.5), which we validated by generating
many independent data sets and comparing the inverse of the FSP-FIM to the variance in the MLE
estimates (Figs. 6.3 and 6.7).

We showed that the choice of FIM analysis can lead to different optimal experiment designs
(Fig. 6.5). For example, Fig. 6.5 shows that the LNA-FIM can substantially overestimate the infor-
mation of certain experiments compared to the full, correct information obtain using the FSP-FIM,

which could mislead researchers to choose experiment designs that are much worse than they ex-
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pect. In practice, overestimation of the Fisher information can have the further deleterious effect
of overcon dence in poor parameter estimates, which can result in model bias and poor predic-
tions as we observed recently in [20]. Furthermore, the LNA-FIM is not self-consistent, and often
overestimates the information even compared to the ellipse found from sampling the MLE with
the Gaussian likelihood function. On the other hand, we found that the SM-FIM under-estimated
the information for the bursting gene model, but the amount of underestimation varied substan-
tially with experimental conditions, which could cause researchers to reject otherwise informative
experiments. In contrast to these moment-based approaches, the MLE sampling using the FSP
approach always provided the best parameter estimates (Figs. 3 and S3), and the FSP-FIM was
always consistent with the con dence intervals veri ed by sampling (Figs. 1 6.1, 6.3, 6.5), even
for the case of nonlinear reaction propensities for which exact moments cannot be found (Figs.
6.7(a), and 6.9).

In our analysis of the non-linear toggle model, we allowed for the independent control of three
experimental variables (Fig. 6.8a), and found experiments that optimize particular criteria of the
FIM. Furthermore, we showed that other experiments very near to the optimal experiment in the
design space can be signi cantly less informative than the optimal experiment (Figs. 6.8(b-e) and
6.4.3. Choosing between such similar experiment designs is non-trivial and would be dif cult or
impossible using intuition alone. On the other hand, we explored the effects of parameter uncer-
tainty on FSP-FIM-based experiment design, and we found that parameter rankings are relatively
robust to parameter uncertainty, even when the absolute value of the FSP-FIM is sensitive (Fig.
6.8).

We found that that the choice of optimal experiments depends on the number of experiments
to be completed (Table 6.2). For example, the optimal set of two experiments may not contain the
optimal single experiment. Sometimes, the FIM for a given experiment may be singular or nearly
singular, indicating that the model under investigation is unidenti able for the current parameteri-
zation and experiment design. In such a case, the FIM-eigenvectors corresponding to the near-zero

eigenvalues indicate speci c linear combinations of parameters that are poorly constrained (e.qg.,
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“sloppy’ directions [21]). If a second complementary experiment can shift the orientation of these
sloppy vectors, then those parameters may yet be uncovered through combinations of multiple
experiments. Alternatively, if a given combination of parameters remains unidenti able for all
admissible experiments, then these irrevocably sloppy directions may be used to reformulate the
model into one that has a reduced set of fully identi able parameters. We note that as one conducts
new experiments and collects new data, parameter posteriors will need to be updated. As this oc-
curs, optimal experiments may also need to be adjusted (e.g., through application of a Bayesian
experiment design framework [115]), and future developments are needed to incorporate FSP-FIM
computations within such iterative frameworks.

Our results show that the FSP-FIM performs better than previous approaches for gene regula-
tion models with low molecule counts or nonlinear reaction rates. Previous studies have demon-
strated many realistic systems for which such FSP can be used to identify and predict stochastic
dynamics in numerous biological systems [11,16,20,42,111,112,116-118]. Each of these studies
has used different experimental input signals, such as temporal salinity pro les [11, 20], tempera-
ture [112], or chemical induction [42,111]. Modern optogenetic experiments promise to allow for
even more robust and exible control of input signals to control cellular behavior [90, 119, 120].
For such studies, the FSP-FIM could now be used to optimize these signals to achieve maximally
informative experiments.

Like any other tool, the FSP-FIM also has its associated challenges. Our initial investigations
focused on intrinsic stochastic uctuations of small biochemical processes, and we used simulated
data to verify our new computational tools. For models with large molecular counts of four or more
species or with the addition of mechanisms to account for extrinsic variability, existing methods
to solve the FSP-FIM will remain intractable until more ef cient probability density based CME
analyses can be developed to address such problems [82,121-124]. Until higher dimension CME
approaches are developed, approximate moment-based experiment design methods, such as the
SM-FIM and LNA-FIM, may remain the only available options to design experiments for large

biochemical pathways. We also note that real experiments come with additional sources of noise,
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such as the errors or uncertainties associated with experimental measurements. For example, in
smFISH data analysis, image processing settings give rise to variability in nal RNA counts due to
density dependent co-localization of RNA molecules. This measurement uncertainty may have a
non-negligible effect on parameter inference, and future controlled experiments are needed to elu-
cidate the degree to which such effects depend on optical imaging settings. Fortunately, such vari-
abilities are easily incorporated within the framework of the FSP analysis. For example, previous
work has used a simple linear transformation to adapt FSP analyses to include the effects of noisy
GFP uorescence emission and background auto uorescence when comparing integer-valued bio-
chemical models to ow cytometry data in arbitrary continuous units of uorescence [42]. Once
adapted to take these transformations into account, the FSP-FIM could be used to design experi-
ments to minimize the effects of measurement noise.

New experimental capabilities are creating an enormous potential to probe single-cell biolog-
ical responses. These capabilities are making it ever more dif cult to choose what species in the
system to measure, whether to measure joint distributions (i.e. measure the RNA counts from mul-
tiple genes in the same cells) or marginal distributions (only measure RNA counts from a single
gene at a time), or in what condition. Furthermore, different experiments have different costs,
and the experimentalists must not only optimize their information about model parameters, but
also consider the trade-off between collecting more data and the cost of a given experiment. By
providing a new computational tool to iteratively improve models and design experiments for an
important class of biological problems, the FSP-FIM will help to improve quantitative predictive

modeling of gene expression.
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Chapter 7
Optimal Allocation of Single-Cell Measurements for

the HOG-MAPK Pathway in S. Cerevisae

7.1 Introduction

The HOG pathway is a pathway commonly studied to understand nuclear localization in re-
sponse to phosphorylation. We have previously used stochastic models of kinase activated tran-
scription to predict adaptive responses across entire cell populations in yeast [11,20,43]. However,
this effort took hours of signi cant computational effort on both the image processing of smFISH
measurements and tting of experimental data. In this work, we use the newly developed FSP-FIM
(Chapter 6 to show how we could have used this model to optimize the design of experiments to
use less measurements to infer the model.

Downstream activation of stress response genes such as STL1 and CTT1 depend on nuclear
localization dynamics of MAPK, a kinase which is phosporylated in response to salt stress and
localizes to the nucleus. Depending on the concentration and rate of application of this stress,
the nuclear localization dynamics of MAPK can be different (shown in Fig. 7.1b). While the rst
study optimizes the experiments to minimize the uncertainty in model parameters, in this study we
nd the optimal smFISH measurement times and cell numbers to minimize uncertainty about the

amount of salt in the environment, and verify this method.

7.2 Background

7.2.1 Finite State Projection models of osmotic stress response in yeast.

Gene expression and regulation is a complicated process in which transcription factors, chro-
matin modi ers, and more interact with DNA, RNA, protein the cellular environment to carry out

different functions. For example, stress response genes are activated in bacteria in response to
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Figure 7.1: Stochastic modeling of osmotic stress response genes in Yexstour state model of gene
expression, where each state creates mRNA with a different transcription rate. These mRNA degrade with
rate . (b) The effect of measured MAPK nuclear localization (left) on the the rate of switching from S2 to
S1 (right) under both 0.2M and 0.4M osmotic stress. (c) Time evolution of the STL1 RNA in response to
the 0.2M and 0.4M salt stress.

heat shock [112]. Furthermore, stress response genes often behave stochastically across isogenic
cell populations, and therefore models of such cellular responses must capture stochastic behavior.
The chemical master equation framework of stochastic chemical kinetics has been the workhorse
of stochastic modeling of gene expression, whether through simulated sample paths of its solution
via the stochastic simulation algorithm [33], moment approximations [12], or nite state projec-
tions [27]. Recently, it has come to light that for some systems it is extremely important to consider
the full distribution of biomolecules when tting CME-based models [20,125]. For signal activated
transcription in the HOG-MAPK stress response pathway in yeast, an FSP model has been used to

t and predict mRNA distributions at a variety of salt concentrations [11, 20].
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This model of osmotic stress response consists of transitions between four different gene states,
shown in Fig. 7.1(a). The probability of a transition from iHeto thej " gene state occuring in
the in nitesimal timedt is given byk; dt. Each state also has a corresponding transcription rate of
MRNA, ki, and the mRNA degrade with rate Further descriptions and validations of this model
are given in the supporting information and in [11,20,43]. To accurately t and predict RNA levels
across cell populations, the authors in [11] cross-validated across a number of different potential
models with different numbers of gene states and time varying parameters. The most predictive
of these was the model shown in Fig. 7.1(a),in which the transition rate from the second gene
activation state to the rst gene activation state is a function of nuclear MAPK levéls, The

nuclear localization of MAPK affects this transition with a threshold function,
k»1(t) = max|O0; f ®]: (7.1)

Figure 7.1(b) shows the nuclear localization dynamics of MAPK {i(¢)) at 0.2M and 0.4M, with
simulated nuclear localization dynamics tto a model (from [20]), and Fig. 7.1(c) shows the value
of k1 (t) for each salinity level. This rate results in a time-vary generator for the master equation
dynamics.

The generator matrix for the FSP system can be written as a sum of multiplied by corresponding

parameters,

X
At) = (DA (7.2)

i=1

The differentA; are matrices of 1's and -1's. The dynamics of the CME are then give%@by
A(t)p.
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7.2.2 Finite State Projection based Fisher Information for signal-activated

stochastic gene expression.

The Fisher information matrix (FIM), is a common tool in engineering and statistics to nd
estimates of parameter uncertainties prior to collecting data, which allows one to nd the exper-
imental settings which make these predicted uncertainties as small as possible. Recently, it has
been applied to biological systems to estimate kinetic rate parameters in stochastic gene expres-

sion systems [14, 38, 39,41, 125]. In general, the FIM for a single measurement is de ned

n (0]
1()=E (r logp(x; )T (r logp(x; )) : (7.3)

As the number of measuremems is increased such that maximum likelihood estimates (MLE)
of parameters are unbiased, the distribution of MLE estimates is known to be normally distributed

with a variance given by the inverse of the Fisher information matrix, i.e.

"R @)Y (7.4)

In chapter 6, we developed the FSP-based Fisher information matrix (FSP-FIM), which allows
one to use the FSP solutiqaix;t) and the piecewise-sensitivity matr&to nd the Fisher in-
formation matrix for stochastic gene expression systems. The dynamics of the sensitivity of each

state in the process to th® kinetic parameteﬁpi is given by

2 3 2 32 3

%SZE:QA Y15PL, 75)

A; A S

whereA; = % and for linear models is the same as #&egiven in Eq. 7.2 [125]. The FSP-FIM

at a single time point is given by

o X 1 PRUPRY
F( i = B msl(t)5| (t): (7.6)
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The FIM for a sequence of measurements taken independently (i.e. for smFISH data) at times

MWt
I(;tie)=  oF( ;t=t): (7.7)
k=1
wherec = [c;; ;i 05 Gy, ] IS the number of cells measured at each of the measurement times.

For smFISH experiments, the vectomplays an important role in the design of the study, as it
corresponds to the time points to be measured (i.e. which times are optimal to x the cells), and
how many cells to count the RNA in at those selected times. The next section aims to nd the

optimalc for STL1 mRNA in yeast cells.

7.3 Results

7.3.1 Veri cation of the FSP-FIM for time-varying stochastic gene expres-
sion

Our work in Chapter 6 was limited to models of stochastic gene expression that had constant
A. Here, we extend this to time-varyirf to the adaptive stress response gene STL1 in yeast
with a time varying signal given in Eqg. 7.1. For this analysis, we considered a subset of all model
parameters, shown in Fig. 7.1(a). Model parameters simultaneously t to experimentally measured
0.2M and 0.4M STL1 mRNA from [20] were used as a reference set of parameters (yellow dots
in Fig. 7.2), . These reference parameters were used to generate 50 unique simulated data sets.
The parameters that maximized the likelihood for each simulated data set were then found as a set
of *, shown as gray dots in Fig. 7.2. Using the asymptotic normality of the maximum likelihood
estimator and its relationship to the FIM (Eq. 7.4), we then compared the 95% Cls of inverse
of the Fisher information to those of the MLE estimates, shown by the blue and green ellipses
in Fig. 7.2(a). We also compared the eigenvalues of the inverse of the Fisher information to the

eigenvalues of the covariance matrix of MLE estimates in Fig. 7.2(b). With the FSP-FIM veri ed
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for the Hog-MAPK model, we next explore how the FIM can be used to optimally allocate the

number of cells to measure at different times after osmotic shock.

7.3.2 Designing optimal measurements for the HOG-MAPK pathway to de-

sign smFISH experiments inS. cerevisae

To test the FSP-FIM in the realistic context of time-varying gene expression, we consider a
simulated course of smFISH data for osmotic stress response of yeast in yeast. We start with
a single experimental replicate of sSmFISH data at 0.2 M NaCl concentration, with a known set
of underlying model parameters, which were taken from simultaneous ts to 0.2M and 0.4M
data in [20]. Parameters for the single simulated data set were found by maximizing the like-
lihood 3.1 using iterative genetic algorithms and simplex-based searches [20]. These baseline
parameters were then used to optimize the allocation of measurements at different time points
t = [1;2;4,6;8; 10 15, 20; 25; 30; 35; 40; 45, 50, 55] minutes after NaCl induction. To show the
practical application of these approaches, we rst designed experiments to maximize the informa-
tion about a subset of the model parameters, sometimes referredte@agimality. This metric
corresponds to maximizing the product of the eigenvalues of the FIM.

The number of cells to be measured at a discrete set of time points for the system can be
optimized using a greedy approach, in which measurements are added one at a time according to
the time point that increases the metric of interest the most. Mathematically, our goal is to nd

P
méalle (c; )jp.suchthat ¢ =1 (7.8)

wherec is a vector of lengtiN, where each entry corresponds to the fraction of total measurements
to be allocated at= t;, andjl (c; )jp. refers to the product of the eigenvalues FIM. To illustrate
this approach, we rst allocated cell measurements accordirgstoptimality. The fraction of

cells that is optimal for a 0.2M NacCl input compared to the experimentally measured number of

cells is shown in Fig. 7.3. While each available time point was allocated a non-zero fraction of
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Figure 7.3: Optimizing the allocation of cell measurements at different time poi¢as.Comparison of
optimal fractions cells to measure (blue) at different time points compared to experimentally measured
numbers of cells (red). (b) Model ts (blue) to experimental data (black) at a subset of time points. The blue
boxes denote the time points of optimal measurements.

measurements, two time pointstat 10 min andt = 25 min were vastly more informative than

the other available time points. To verify this result, we simulated 50 data sets of 1,000 cells
each and found the MLE estimates for each sub-sampled data set. We compared the spread of
these MLE estimates to the inverse of the optimized FIM, shown in Fig. 7.2. The increase in
information of the optimal 0.2M experiment is compared to the baseline, “intuitive' experiment

is shown in Fig. 7.4(a). The optimal experiment only requires measurement of 2 time points
compared to the full experiment, in which 16 time points were measured. We next compare the
intuitive experiment design to a random experiment design, in which measurements are randomly
distributed among different time points, and compareDheptimality. Fig. 7.4(b) shows that the
intuitive experiment is more informative than a random experiment, but is still signi cantly less

informative than the optimal experiment.

7.3.3 Designing optimal biosensor experiments

Thus far, we have considered a set of experiments to nd the optimal experiment regarding
the information about model parameters. We next use the model to design an optimal series of
smFISH measurements to sense the cellular environment. In the HOG-MAPK transcription model,

we model the way that extracellular osmolarity ultimately affects stress response gene transcription
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Figure 7.4: Information gained by performing optimal experiments compared to actual experif@@nts

D s-optimality for the optimal design using only two time points compared to the measured number of cells
using all 16 time points. (b) Comparing the information of the optimal experiment design (blue), intuitive
experiment design (purple), and random experiment designs (black).

levels through the time-varying parameker(t) in Eq. 7.1. Figure 7.1b shows the effect 0.2M and
0.4M salt concentrations oky, activation. Higher salt concentrations delay the time at which

k,1(t) becomes nonzero. Using this fact, we approximate the funktigit) as the sum of three

Heaviside step functions,
koi(t) = u(t) u(t ty)+ ut ty); (7.9)

wheret; is a xed delay of the time it takes for nuclear kinase levels to reach a particular threshold,
andt, is the time they drop below that threshold. Our goal in this section is to nd an experiment
which reduces the uncertainty ta for a range of values df,, shown in Fig. 7.5(a). We are
assuming that, is related to the salt concentration experienced by the cell, as shown in Fig.
7.1b and 7.5(b) in which 0.2M salt inputs have a lowethan 0.4M salt inputs. To estimate the
uncertainty int, given our model, we nd the sensitivity of the distribution of mMRNA abundance

to the variable,. This FSP-sensitivity requires nding, = %. As ky(t) is the only part ofA
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Figure 7.5: Overview of optimal design for biosensing experiments in the osmotic stress response in yeast.
(a) Unknown salt concentrations in the environment give rise to different reactivation tipme3hese
different reactivation times cause downstream STL1 expression dynamics to behave differently as shown in
panel (b). These different responses can be used to resolve experiments that reduce the uncéstainty in

that depends explicitly oty, we only need

@k (t)
= (tp); 7.10
@1 (t2) (7.10)
and therefores;, = % is only non-zero at = t,. The time evolution sensitivity of the system to
t, is then
2 3 2 32 3
dgp A O0zgP :
3 6=8" 887 wih 5(0)= s.p(to) (7.11)
St, 0 A s,

and time is integrated frorty to the nal time of interest. This suggests that the time evolution
of the sensitivities only really depends on probability ve@ox;t = t;) and the generator matrix

A, ie. ‘% = Asy,. If the Fisher information at each measurement time is written into a vector
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MWt
| (ty) = cef = cTf: (7.12)
k=1

Because our goal is to nd an experiment that is optimal given a range of posgibl@vhich

we have assumed is linearly related to the salt concentration in the environment), the time until

reactivation is treated as a uniform random variable over the range of reasonable activation times,

T unif(td™"; t7'®), wheret]" andt}® correspond to the minimum and maximuagvalues we
consider. To nd the experiment that reduces our uncertainty,inve integrate the FIM in Eq.

7.12 over the uncertainty if,

Z tmax
2
Copt = MIN p(t)I (c;t,=t; )dt (7.13)
c tgﬁin
Z tI2T1aX
=min | (c;ty = t; )dt; (7.14)
c tgﬂn

because we have assumed th@) is uniform. The objective function of our minimization is the

integral

Z tmax
2

J= I Yc;t, =t )dt; (7.15)

min
3

which corresponds to the uncertainty about the value &r a givenc. We then used the same
greedy approach described in Section 7.3.2 to nd the optienallo verify this approach, we

sampled a random value of, which we calltj“¢. For this value oft,, we then simulate 100

random data sets of according to each of the ve experiment designs in Fig. 7.6. For each of the

random data sets, we asked which FSP solution for the ranggevafues was most likely using

Eq. 3.1, which we caff,, and made a tablgj'® f.,]. The error in the estimation is then the MSE

of the columns of this table, as shown in purple in Fig. 7.6. The optimal design and the simpli ed

design perform much better than a uniform design or random experiment designs. The simpli ed

design refers to a design which uses the same time points as the optimal design, but with equal

numbers of measurements at each time.
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7.4 Discussion

The methods developed in this work presents a principled, model-driven approach to allocating
single-cell measurements in a time-varying stochastic system. We demonstrate these theories on
a well-established model the osmotic stress response in yeast cells, and particularly for the STL1
gene, which is activated upon the nuclear localization of phosporylated MAPK [11, 20]. For this
system, we showed how to optimally allocate the number of cells measured at different times to
maximize the information about a subset of model parameters. We then compared these optimal
designs to the actual experiments performed and randomly generated experiments shown in Fig.
7.4b. We found that while the experiments performed were much better than you would expect
by random chance, they still had lower Fisher information than the optimal experiment. Similarly,
the optimal experiment design consisted of measuring only two time points in the process many
times, compared to a more intuitive design of relatively uniform measurements, as shown in Fig.
7.4a. This suggests that the optimal design not only found an experiment that increases the Fisher
information, but also is experimentally "cheaper' than an intuitive design.

We then used Fisher information to design experiments to learn about the cellular environ-
ments. Using the same osmotic shock response model, we found the optimal experiment to reduce
the uncertainty about the adaptation time, given a range of possible adaptation times. We then
compared this experiment design to other experiment designs, including an intuitive design, where
all time points are treated equally, and two other random experiments in Fig. 7.6. This method
of using design experiments to use cells as biosensors in stress environments could be extremely
useful in a biomedical contexts, where the time and amount of sample can be hugely important.

This work also provides another example of model-driven experiment design.
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Chapter 8
Using Fluctuations to Expand the Color Palette of

Single-Molecule Microscopy*

8.1 Introduction

Recent technology developments allow the quanti cation of single-RNA and proteins in live
cells. The MS2 system [126—-129] encodes stem loop structures into a gene of interest, which
are subsequently bound by uorescently tagged MS2 coat proteins upon transcription of RNA.
This approach allows one to see single RNAs as they are transcribed and transported within the
cell [130].

In the same spirit, recent works have developed the technology to visualize single polysomes
[23-25]. For this method, the gene is modi ed to produce proteins that bind antibody-like probes.
This technology has been combined with the MS2 system to visualize the entire central dogma of
molecular biology at single-molecule resolution. However, these new technologies have created
a need for more advanced computational approaches to help design future studies. For example,
where in the gene of interest should one add MS2 sequence or FLAG sequence to answer a partic-
ular biological question?

One limitation of antibody-like based live-cell protein measurements is the relatively small
numbers of colors available to make the measurements [23-25], which fundamentally limits the
number of genes that can be measured in a single cell, and therefore limits the scope of questions
that can be addressed with this technique. However, different genes have different sequences,
codon dependencies and lengths, all of which give rise to different uctuations in the single-

polysome intensity traces measured with the nascent polypeptide chain tracking described above.

4This chapter rst summarizes the modeling approach developed by a collaboration of the Munsky Group (compu-
tational) and Stasevich Group (experimental), primarily led by Luis Aguilera on the computational side. This chapter
extends that analysis to multiplex the number of genes that can be measured in single cells.
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The characteristics of these uctuations, such as their autocorrelation times, mean intensisty levels,
and variance intensity levels can be used to discriminate between proteins without using different
uorophore. These statistics can be used for multiplexing, i.e. discriminating between multiple
genes without using different colors of molecules. Such multiplexing could expand the number
of proteins that can be imaged in different cells. In this work, we develop a stochastic model of
translation, describe the statistics of this process, and develop a novel computational pipeline that

accurately classi es experimental trajectories that have been trained on simulated trajectories.

8.1.1 Stochastic Model of Translation Dynamics

Single-molecule translation is stochastic process in which ribosomes bind with messenger
MRNA, and polymerize polypeptides one amino acid at a time. Each amino acid addition, or
elongation event, of the protein can be modeled as a stochastic event which occurs with proba-
bility w;(x;)dt in the in nitesimal time intervaldt. Ribosomes bind the mRNA with probability
kinit dt, and dissociate with probabilty;x,dt. Elongation of multiple nascent proteins along a
single mMRNA molecule may be modeled as a discrete, stochastic process in which ribosomes bind,
elongate polypeptide chains, and terminate. By enumerating the position of each codon along the

MRNA X;, the process can be written as a series of chemical reactions

s {ﬂnn (1 x1) Wi (X2;:5Xnf +1 ) fri+1 (Xi+1 X nf +1)

X! 2 !

1-

R M (8.1)

This general formulation of the model allows for several important biological features of elonga-
tion, such as the effects of “ribosome exclusion”, in which a ribosome may not advance to the
i + 1™ position if there is another ribosome in the n; codons in front of it. This causes the

propensities of each step to be non-linear functions,
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¥
Wo=ki (1 Xx); (8.2)
j=1
¥
W = Ke(i) Xi (1 Xisj); fori=1;:5N 1 (8.3)
j=1
Furthermore, one can incorporate codon-speci c elongation rates for each step of the process,

where the propensity coef ciere(i) depends on the relative abundance of that particular codon

in the human genome,

Ke(i) = ke (u(i)=u): (8.4)

Finally, the termination of elongation can be found using a single rate,

Wy = ki Xy (8.5)

This set of biochemical reactions can be used to track the positions of individual ribosomes as
they move along the RNA, creating the polypeptide. At a given tipthis approach describes

the binary occupancy of each codon position along the mRNA. The ve¢tprs a vector of 1's

and O's of lengthN . However, single polysome measurements do not resolve single ribosomes, so
to compare the vectot(t) is not an observable quantity. Instead, diffraction limited uorescent
spots are quanti ed. To compare simulations to such single molecule data, the vector of ribosome
positionsx (t) needs to be mapped to uoresence intensitigs. Every time a ribosome passes the
epitope region of a gene, FLAG-tags bind to amino acids, and increases the uorescence intensity
of the polysome. The locations of epitope regions can then be used to map ribosome positions to

uoresence intensities using a probe design vectof lengthN :

X
I(t) = GXj = c'x: (8.6)
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The vectorc is the cumulative sum of a vector of length with 1's in the epitope regions and

O's elsewhere. This formulation of a mechanistic stochastic model of translation can be simulated
using the stochastic simulation algorithm using the software rSNAPSIM [131], to obtain the inten-
sitiesl (t) over time. Intensities for two genes, KDM5B and H2B are shown in Fig. 8.2, along with
experimentally measured intensity trajectories, distributions,and autocorrelations measured for the

two genes.

8.2 Autocorrelation of translation dynamics

When ribosome loading is sparse, higher-order interaction of ribosomes is rare, and the non-
linearities in Eq. 8.2 have a lesser effect on the dynamics. Under such circumstances, it is possible
to derive a simpli ed linear system model for the elongation dynamics, which is nonphysical in
the sense that a ribosome could pass another ribosome while elongating. In the linear model, the
propensity of an elongation stepug(X;) = kiX;, and the ability of a ribosome to add another
amino acid only depends on the current position of the ribosome, and not on the footprint of other
ribosomes.

For this simpli ed process, we can de ne a stoichiometry matrix that describes the change in
x for every reaction,

8

3 lforalli = |
Si;j = (87)

3 lforalli=j 1,

wherei corresponds to each codon in the protein of interest. Each row of the stoichiometry matrix
corresponds to an elongation event of an individual ribosome front'the thei + 1" codon. The

propensities of each reaction can be written in the af ne linear form
W = wo+ W X; (8.8)
wherewy is a column vector of zeros with the rst entky andW ; is a matrix
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8
2 ke(i) foralli = j
W]_i;j = 8 (89)
T ke(i) forall i=j 1
Under these assumptions, the rst two moments of the intehgt)ycan be found:
Efl (t)g= Efcxg= cEfxg (8.10)
Efl(t)2g= Efcxx 'c'g= cEfxxTgc': (8.11)

The autocorrelation dynamics of the process are de ned in terms of the inté(itys in Eq. 8.6

and can be decomposed in terms of the ribosome position veesr
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Figure 8.2: Comparing experimental and simulated statistics of single-model translati&rperimental
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Efc™x(t)x(t+ )'cg (8.12)

G( )
(8.13)

CcEfx(t)x(t+ )Tgc':

Noting thatc is a constant with respect tq it is only necessary to nd the auto- and cross-

correlations of the ribosome positions. Following the regression theorem [32], these correlations

are given by the solution to the set of ODEs,

d(
—r = 8.14
| () (8.14)
given the initial condition is the steady-state covariance of the process, i.e.
(8.15)

(0) = lim Efx(t)x(t)"g

and the autonomous matrix of the process SW . Because the system is linear, the steady-state

covariance g is given by the solution to the Lyapunov equation
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Figure 8.3: Outline of CNN based approach to classify polysomgg.Given two different gene sequences,

a stochastic model of protein elongation can simulate intensity trajectories. These intensity trajectories can
be used to generate training data (b) that can then classi ed using a convolutional neural network (CNN),
shown in (c). After training on purely simulated data, the CNN can be used to classify intensity trajectories
measured in murine cells.

SW;, (0)+ (0) W ]S" + Sdiag(W 1Efxg+ wg)S™ =0: (8.16)

Integrating Eq. 8.14, the autocorrelation of the intenBify) can be found using Eg. 8.12. In
practice, autocorrelations are dif cult to measure from a single uorescent signal [23, 127, 131],
due to nite signal length, photobleaching effects, and measurement noise. The effect of nite mea-
surement time on autocorrelation is shown for an arbitrary gene in Fig. 8.1. While autocorrelation
dynamics are not always accurate for a single trajectory, they can be averaged across ensembles of
traejctories to give insight about the time scales of the uctuations in intensity signal [23]. Because
the aim of this study is identify single-trajectories withing cells, we now turn to other computa-
tional methods to discriminate between multiple genes, which use the biophysical model described

above to generate data for a statistical model that can accurately classify single trajectories.
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8.3 Convolutional neural networks to multiplex single-molecule

translation

The role of neural networks in modern machine learning approaches has vastly increased in re-
cent years. In particular, convolutional neural networks (CNN) [132, 133] have become extremely
popular for image recognition, but also image generation [134]. CNN's have been applied to clas-
sify histological samples [135-137], segment cells for microscopy data [138]. The disadvantage
of neural network based algorithms is the ambiguity that one faces in trying to interpret the result-
ing weights and biases from the network, though recent work has started to develop some insight
about what different layers of the network are doing [139]. In general, CNN's can be thought of as
optimal lters for classifying the image of interest. This property makes them ideal for time-series
classi cation of a stochastic process, as they are able to nd the relevant frequency relationships
within the data, compared to a recurrent neural network or LSTM, which essentially is a set num-
ber of neural networks that “unfold” in time [140]. Because of the explosion of methods in the eld
of machine learning, there are many types of algorithms and sub-algorithms that can be used for
any problem, and there seems to be some art in deciding which method is best for which problem.
In our case, CNN's are likely to be successful for classifying trajectories, though other approaches,
such as hidden Markov Models, standard neural networks applied to the frequency decompositions
of the data, or other approaches may also be successful.

There are some aspects of our problem which make it interesting from a computational/theoretical
standpoint beyond applying a black-box method to some data and obtaining classi cations of dif-
ferent trajectories. Our goal is to train and validate the model on simulated data exclusively, and
then see how well the same neural network is able to classify experimentally measured trajecto-
ries. This approach requires the model to be extremely representative of the data, which we show
in [131], and importantly that there is way to nd all parameters of the model prior to collecting
data. Ultimately, this will require estimating the average elongation rate, initiation rate, and termi-

nation rate for a gene based on it's sequence alone. The advantages of such a model are vast, as
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one can then use it to design experiments to optimally distinguish between multiple genes in single
cells.

We start by training a CNN on simulated trajectories for the KDM5B and H2B genes, shown in
Fig. 8.3(b). The neural network architecture was extremely simple, consisting of two convolutional
layers, two max pool (averaging) layers, and a single dense layer for classi cation. The network
was implemented with the Keras [141] package for TensorFlow [142]. Validation for these two
genes is shown in Fig. 8.4(a) and (b), and 100% accuracy is achieved. As a proof of concept, we
then take this network and ask how well it is able to classify experimentally measured trajectories
of H2B (N=10) and KDM5B (N=18), shown in Fig. 8.4(b) and (c). While all trajectories are
correctly classi ed for KDM5B, only 60% were correctly classi ed for H2B. While the goal of this
approach is to tell apart trajectories in the same cell and the same color, we do not currently have
experimental data with two genes in the same cell with different color tags, and therefore cannot
validate the classi cations from the same cell. Despite the experimental challenges associated with
measuring gene, the results in Fig. 8.4 are suf cent to motivate further exploration of this approach
as data quality improves. Having validated the network, we next ask how different experimental

parameters can affect classi cation results.

8.3.1 Experiment design using convolutional neural networks

One major question for uorescence microscopy is how to choose the frame rate of the camera
to measure trajectories. For many live cell experiments that rely on uorophores, the number
of photons released by a given particle decreases as they are exposed to light, and therefore the
signal decreases. This decrease in signal creates noisier measurement. Therefore, there is an
inherent tradeoff between measurement time and experimental noise. Often times, it is of interest
to numerically remove this effect by tting and normalizing uoresence intensity measurements to
an exponential curve [23,143].

To simulate the effect of variability in the number of photons that are detected by the camera

given a single (or multiple) uorophores, we add white noise (poisson limit of large numbers of
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photons) to the simulated trajectories,

M) = 1)+ ; (8.17)

where is a normally distributed random variable that does not have any temporal correlation. As
the noise level increases, the ability to correctly identify the trajectories decreases, shown in Fig.
8.5(b). Figure 8.5(a) shows the improvement of identi cation of single trajectories as a function

of the trajectory length. In a more realistic scenario, as trajectory length increases, the noise
also increases, as one must use lower laser power to avoid photobleaching effects. However, as
this tradeoff is yet to be rigorously experimentally quanti ed, we compute identi cation accuracy
accross a range of measurement times and experimental errors, shown in Fig. 8.5. The tradeoff

between trajectory length and measurement noise is a (unknown) curve on that contour plot.

8.4 Discussion

Single-molecule imaging of the entire central dogma of molecular biology has only recently
been possible with the advent of single-polysome translation imaging methods [23-25]. Here, we
demonstrate a stochastic model of the translation process, and drawing on our work [131], show

that it can match the statistics of measured polysome intensity trajectories. We showed that this
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model can be used to generate autocorrelations under a linear model assumption, which in principle
is different for genes of different lengths. We then ask how this model can be used to multiplex
single-molecule translation experiments, in which there are a nite number of colors that can be
used to image within single cells, which limits the number of genes that can be measured. While
autocorrelations can be rapidly generated from the approximate model (Eq. 8.14), effects of noise
and nite measurement times make them dif cult to compare to experimental data, shown in Fig.
8.1. Because of the challenges associated with autocorrelation based identi cation of single-cell
trajectories, we turn to a hybrid method that uses the stochastic model we de ne in Eq. 8.1 to
generate training data that accurately represents what one can expect to see experimentally [131],
but can be generated in essentially unlimited quantity, as compared to the relatively dif cult to
obtain experimental trajectories. The other advantage of an approach based on simulated training
data is that one can change the experimental settings, such as noise and measurement time to
nd conditions which are optimal for discriminating between multiple genes in the same cell Fig.
8.5. However, the classi cation of simulated trajectories is only meaningful if the same neural
network model can be used to classify experimental trajectories. In Fig. 8.4, we showed that the
trained network can distinguish between experimentally measured KDM5B and H2B trajectories
that came from different cells with moderate accuracy.

As our ability to include more accurate measurement and biological details into the stochastic
model improves, the model that is trained on the simulated data should more accurately re ect
classi cations that we can expect from experimental trajectories. In addition to improving the
biophysical stochastic model, in the future we will include more experiment design features, using
multicolor probe designs, such as those used by Lyon et al [26]. Multiple probe colors and their
positions within the protein of interest will affect the uctuation characteristics and could lead to
coordinated designs to measure 10's of genes in the same cells. Furthermore, the neural networks
to classify the genes can be added to image acquisition software, leading to real-time classi cation

of genes and experiment designs. Paired with optogenetic technology [90, 144], these methods
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could be used analyze and control gene expression in live cells with feedback control to drive cells
towards particular cell fates and coordinate with other cells.

This work demonstrates a combination of mechanistic modeling and machine learning. The
mechanistic model provides ample stochastic trajectories to train the convolutional network, which
would otherwise require a large number of measured trajectories to train. This idea may be useful
for other data types, where data is limited and a mechanistic model can be readily de ned, but

there is no clear way to apply the mechanstic model to the data.
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Chapter 9

Conclusions and Future Work

This dissertation has developed a new set of computational tools to better understand and make
use of computational models of gene expression. The advances presented here are meant to make
biological modeling, even for systems with noisy processes like bursting transcription/translation,
single-molecule translation, more integrated with experimental data. In general, a main goal of
computational and systems biology is to develop useful models that accurately descibe experimen-
tal observations by logically gathering known information about the system that is being studied,
and using it to predict how this system will behave in different environments. However, predictive
modeling has thus far had mild success, which is often attributed the extreme complexity of bio-
logical systems. To address the complexity in biology, the modeller is ofter tempted to add enough
details to capture all the known biological information, which requires a huge number of kinetic
parameters. These parameters are almost impossible to infer from data because they are poorly
constrained by the relatively low dimensional quantitative data that is available, and the models
are often analyzed at the level of average expression of the relevant biomolecules in the system.
Another reason that less detailed models of gene expression have had limited successes may be
that the analysis approach is very important, and that using average behavior is not a good proxy
for the underlying behavior of the system. This dissertation develops new methods for analyzing
relatively small stochastic models of gene expression with a high level of precision, to rigorously
co-design modern single-cell, single-molecule experiments and biological models of their under-
lying processes.

The FSP bounds on the likelihood of single cell data in Chapter 4 can be used to speed up
the identi cation of stochastic models of gene expression by using the data to inform the accuracy
of the model itself. While the bounds themselves are novel, the idea of using data not only as
a quantity to t the model, but also to constrain its computational cost is powerful idea that can

be applied in other ways. For example, Chapter 5 uses the data to de ne a lower dimensional
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basis on which we projected the FSP dynamics. This project uses a small number of radial basis
functions to interpolate the entire, high-dimensional state space. However, a rigorous error model
using radial basis functions was not able to be developed. Furthermore, it would be interesting
to investage, for both the FSP bounds and the project-based model reduction, to investigate how
constraints that come from multiple types of data can be imposed on FSP solutions. For example,
one could imagine using bulk assays to learn the mean of the process, and use that information to
help de ne basis centers or constrain the FSP bounds. Furthermore, the FSP bounds have yet to
be applied to a Bayesian inference scheme, in which one could rapidly nd posterior parameter
distributions.

This work also takes some steps forward in using identi ed predictive, stochastic models and
using them to design experiments that are as informative as possible. The FSP-based Fisher in-
formation approach presented in Chapter 6 has been used to optimize measurement times in a
simulated model of bursting gene expression and a simulated toggle model. We also use the FIM
to design optimal optogenetic-controlled degradation in the simulated toggle system. Finally, we
studied the allocation of measurements at different times in an experimental yeast system, and val-
idating the FSP-FIM for time-varying inuts. In the future, the FSP-FIM could be used in the setting
of uorescence-activated cell sorting to de ne a population of cells with stochastic gene expression
dynamics that are optimal to learn about a particular feature. In a similar vein, the FSP-FIM can be
used to develop optimal image analysis by only spending computational power to count individual
RNA in cells that are likely to be informative. Finally, often times we are not concerned about
the uncertainty in the parameters of the model, but rather in the uncertainty in the predictions the
model will make. In that vein, we are developing a prediction-uncertainty reduction method that
makes use of the FIM.

For models of single molecule translation in Chapter 8, we developed novel methods to mul-
tiplex the measurements of multiple genes in the same cell. By using a mechanistic model to
simulate the gene expression of the two genes, H2B and KDM5B, we generated intensity trajec-

tories that have realistic uctuation characteristics compared to the single-polysome translation
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measurements [23—-25]. We then showed how a simpli ed model that does not allow for ribosomal
exclusion can be used to nd the autocorrelation function for different genes. Finally, we showed
that the stochastic mechanistic model can be used to generate training data for a machine learn-
ing algorithm, which was then able to classify experimentally measured trajectories. This novel
approach could be used to expand the number of genes that are able to be measured in a single
cell from one or two genes to ten to twenty genes. By measuring more genes in single cells, it is
possible to understand more about the dynamic regulation of genes than is otherwise possible.

This dissertation is primarily concerned with developing novel computational and theoretical
methods to model and analyze modern single cell data. Often, computational methods and models
are built in a vacuum, isolated from data and the messy world of biological measurement. Our
approach is to build these tools so that they can be applied with experimentalists in mind. A major
part of bridging computational methods to use for actual experiments requires easy-to-use soft-
wares to develop models and design experiments. Along these lines, a major step forward (and
one that is currently in progress), is the creation of software that can de ne a stochastic model,
input single-cell measurements, identify model parameters, and design future experiments. Such
software should have an attractive graphical user interface. For the single molecule translation
problem, our group has started developing the rSNAPSIM package, which allows one to simu-
late and analyze intensity trajectories for any gene of interest. We have also started to develop a
software called the Stochastic System Identi cation Toolkit, which provides graphical model con-
struction and basic model tting approaches. Eventually, the FSP-bounds, projection based model
reduction, and FSP-based FIM will all be used to enhance this software.

In conclusion, the works here present rst steps in lling out the toolkit for analysis of full
probability distributions of biomolecules across populations of cells. As quantitive methods to
measure single molecules in single cells has improved, there is a need to develop better methods
to analyze and interpret data. Quantitative modeling and prediction of how biological systems
behave will revolutionize medicine and agriculture, especially as our ability to manipulate and

design DNA improves.
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