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ABSTRACT

AUTOMATING THE DERIVATION OF MEMORY ALLOCATIONS FOR

ACCELERATION OF POLYHEDRAL PROGRAMS

As processors compute power keeps increasing, so do their demands in memory accesses:

some computations will require a higher bandwidth and exhibit regular memory access pat-

terns, others will require a lower access latency and exhibit random access patterns. To cope

with all demands, memory technologies are becoming diverse. It is then necessary to adapt

both programs and hardware accelerators to the memory technology they use. Notably,

memory access patterns and memory layouts have to be optimized. Manual optimization

can be extremely tedious and does not scale to a large number of processors and memories,

where automation becomes necessary.

In this Ph.D dissertation, we suggest several automated methods to derive data layouts

from programs, notably for FPGA accelerators. We focus on getting the best throughput

from high-latency, high-bandwidth memories and, for all kinds of memories, the lowest re-

dundancy while preserving contiguity. To this effect, we introduce mathematical analyses to

partition the data flow of a program with uniform and affine dependence patterns, propose

memory layouts and automation techniques to get optimized FPGA accelerators.
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Chapter 1

Résumé en français

1.1 Introduction

Dans le domaine du calcul haute performance comme dans celui de l’informatique em-

barquée, on observe une demande croissante de performance de calcul combinée à une de-

mande de réduction de la consommation énergétique des mêmes systèmes. Pour parvenir à

ces fins, il est nécessaire d’utiliser des accélérateurs matériels et des architectures spécifiques.

L’accent mis sur le parallélisme au cours des années 2010 est à l’origine d’une importante

proportion des gains en performance observés durant cette décennie. Celle-ci fut permise à la

fois par la finesse de gravure des puces, qui permit de mettre davantage de ressources de calcul

à disposition des utilisateurs, et par le développement de compilateurs auto-parallélisants,

qui en permirent l’exploitation.

L’augmentation de la puissance de calcul se traduit par une pression accrue sur les

systèmes mémoires qui, incapables d’y satisfaire, ralentissent alors les calculs. Ils sont aussi

à l’origine d’une fraction importante de la consommation énergétique en raison des trans-

ferts inter-puces qu’ils effectuent. Pour faire face à ces deux défis, de nouvelles architectures

mémoire sont en développement : certaines, comme les mémoires LPDDR, visent une basse

consommation; d’autres au contraire cherchent à maximiser le débit en entrée et sortie comme

les architectures HBM.

L’émergence de nouvelles architectures mémoire permet d’adapter le choix du sous-

système mémoire au système développé. Ce seul choix ne suffit pas à garantir un débit

effectif ni une consommation optimales. Afin d’exploiter au mieux l’architecture choisie,

il est nécessaire d’optimiser le programme ou l’architecture de calcul afin d’optimiser son

utilisation de la mémoire.
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On peut regrouper les optimisations existantes en deux catégories : les optimisations de

localité, qui visent à réduire la quantité d’entrée/sortie mémoire en exploitant les données

présentes dans les caches et mémoires locales, et les optimisations d’accès, qui visent à réduire

le temps de transfert total et ainsi obtenir le débit le plus élevé possible.

Dans cette thèse de doctorat, on s’intéresse particulièrement aux optimisations d’accès.

Contrairement aux optimisations de localité, dont beaucoup sont aujourd’hui automatisées,

les optimisations d’accès sont peu nombreuses, et demandent des modifications profondes

dans la structure des données utilisées par le programme. De telles modifications peuvent

permettre d’exhiber des motifs d’accès à la mémoire plus efficaces, car plus adaptés à la

topologie des mémoires et au fonctionnement des contrôleurs. Notamment, les accès contigus,

ou burst, sont les plus efficaces avec les contrôleurs DDR, mais aussi les plus difficiles à faire

apparâıtre.

On développe dans cette thèse des méthodes d’analyse de programme permettant de

connâıtre les besoins précis en données de chaque partie accélérée du programme, et de

transformer la disposition des données ainsi que les motifs d’accès de l’accélérateur pour

faire apparâıtre des accès contigus. Pour effectuer de telles modifications, rendant poten-

tiellement inintelligibles les données à l’utilisateur, il est nécessaire de s’assurer de la correc-

tion des résultats fournis par le programme; cette assurance n’est possible que moyennant

des hypothèses sur le comportement du programme, qui sont vérifiées à la compilation. Afin

de permettre de transformer l’éventail le plus large possible de programmes, on cherche dans

cette thèse quelles sont les hypothèses les plus faibles permettant de garantir la correction

des transformations effectuées.

On propose ainsi dans cette thèse les contributions qui suivent :

• Une allocation de données contigue pour programmes utilisant un pavage polyédrique

rectangulaire permettant aux accès contigus de traverser les frontières des tuiles,

• Une analyse à grain fin du flot de données du programme ainsi qu’un découpage de

celui-ci en blocs de données pouvant être rendus contigus,
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• Une transformation de programme utilisant l’analyse précédente pour compresser à la

volée les données tout en assurant un volume d’entrée/sortie minimal,

• Une étude théorique sur les limites de validité des transformations proposées.

1.2 Allocation de données contigue pour pavage rect-

angulaire

Dans le chapitre 4, on propose une allocation de données spécifique aux accélérateurs

FPGA visant à maximiser l’exploitation de la contiguité tout en contrôlant le volume d’accès

dits redondants, c’est-à-dire le volume de données échangées bien que non utilisées afin de

préserver la contiguité.

Lorsque le programme admet une représentation polyédrique, il peut être possible de

lui appliquer un pavage (découpage de l’espace des itérations en tuiles de forme similaire),

afin d’augmenter la localité des accès. Des données issues de l’exécution de chaque tuile

sont nécessaires pour exécuter d’autres tuiles voisines; en outre, il est suffisant de n’allouer

de mémoire que pour certains résultats intermédiaires. Lorsque les dépendances entre les

calculs du programme sont dites uniformes, les données à allouer sont contenues dans les

faces des tuiles voisines, dans une enveloppe rectangulaire de taille bornée et déterminable à

la compilation. En choisissant de découper cette enveloppe en sous-enveloppes rectangulaires

par projection, on obtient des ensembles de données qu’il est possible d’allouer en mémoire

de manière contigue.

La connaissance du flot de données permet de connâıtre chacun des blocs à rechercher;

on exploite alors le voisinage de ces blocs en mémoire, s’il existe, pour regrouper ensemble

les accès aux différents blocs et obtenir les transactions les plus longues possibles. Ces

deux niveaux de contiguité permettent d’obtenir une augmentation de la bande passante

utilisée; les expériences qui ont été menées pour valider cette approche montrent qu’il est
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ainsi possible d’utiliser l’intégralité de la bande passante vers la mémoire de l’accélérateur

FPGA.

1.3 Analyse et découpage du flot de données

Dans le chapitre 5, on s’intéresse au comportement mémoire des programmes pavés

lorsque le pavage est composé d’hyperplans quelconques. On effectue pour cela une analyse

plus précise du comportement des programmes admettant une représentation polyédrique.

Chaque tuile a besoin de résultats intermédiaires calculés par d’autres tuiles voisines. Lorsque

les dépendances entre les calculs sont uniformes, toutes les tuiles exhibent une empreinte

d’accès similaire sur leurs voisines. On propose alors d’exploiter cette régularité et de

découper les données transmises en groupes dotés de trois propriétés :

• Atomicité : La consommation d’un élément d’un groupe implique la consommation de

l’ensemble du groupe;

• Unicité de l’origine (irredondance) : aucun élément ne peut faire partie de plusieurs

groupes à la fois, et chaque groupe est originaire d’une unique tuile.

• Maximalité : Si deux éléments ont exactement les mêmes tuiles consommatrices, alors

ils appartiennent au même groupe.

Ces trois propriétés caractérisent, et permettent de construire, les MARS (Maximal

Atomic irRedundant Sets) qui peuvent être utilisés pour, outre la construction d’une al-

location de mémoire, la détection et la correction des erreurs.

1.4 Allocation de données partitionnée et compression

à la volée

Dans le chapitre 6, on étudie une application de l’analyse précédente afin de construire

une allocation de mémoire qui permette d’avoir l’utilisation la plus efficace du bus mémoire
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tout en y faisant passer le volume de données le plus petit possible. Il est ainsi nécessaire

d’avoir recours à la fois à la contiguité et à la compression des données.

Les propriétés des MARS permettent d’exhiber des blocs contigus, candidats à la com-

pression en raison de leur propriété d’atomicité; afin de maximiser la contiguité, il est

nécessaire de l’étendre à travers les blocs MARS ainsi créés. On formule un problème

d’optimisation pour disposer en mémoire les MARS en cherchant à minimiser le nombre

d’accès burst effectués. On propose également de compresser les données des MARS, et

d’empaqueter les blocs compressés pour gagner à la fois en bande passante et en données.

Cela permet de travailler avec des données dont le type et la largeur sont arbitraires, ce qui

est courant sur FPGA, sans perte de bande passante.

On implémente un générateur de code permettant d’automatiser la création d’unités

mémoires spécifiques, exploitant les MARS et leur compression, pour des accélérateurs

FPGA.

1.5 Extension aux dépendances affines

Dans le chapitre 7, on s’intéresse aux limites des méthodes proposées aux deux chapitres

précédents. Ceux-ci ne peuvent considérer que les dépendances entre les calculs lorsque celles-

ci sont uniformes. Sont exclus les accès à la mémoire issus de dépendances non-uniformes,

qui constituent pourtant l’essentiel des accès de certains programmes.

Le modèle polyédrique permet de représenter des dépendances affines, dont celles uni-

formes sont un cas particulier. Dans ce chapitre, on étudie ainsi la forme des dépendances

affines qui peuvent engendrer des structures similaires aux MARS, tant sur des espaces de

données d’entrée, que sur des espaces d’itérations pour le passage de résultats intermédiaires.

Il est nécessaire que soit préservée l’uniformité des ensembles de données consommés par

chaque tuile, c’est-à-dire la forme et la position de chaque ensemble, pour les qualifier de

MARS.
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Il ressort de cette étude que peuvent amener à des MARS les dépendances affines uniques,

ou celles multiples partageant la même partie linéaire ou, à défaut, le même noyau. On pro-

pose également une méthode construction des MARS dans ces cas. Le cas des dépendances

entre espaces d’itérations déjà tuilés est étudié, et une conjecture sur l’existence de MARS est

établie. Cette conjecture soumet l’existence de MARS dans l’espace producteur, à l’existence

d’un lien entre un déplacement dans l’espace consommateur et un déplacement dans l’espace

producteur.
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Chapter 2

Introduction

Performance optimization is a major topic of computer science today. The continued de-

mand for performance drives the emergence of domain-specific hardware accelerators, under

the form of fully application-specific integrated circuits (ASICs), accelerators implemented

inside configurable chips (field-programmable gate arrays, FPGAs), or also as specialized

units within general-purpose processors.

Creating domain-specific hardware is not sufficient to get a high performance; the hard-

ware must be fully exploitable and exploited. To this aim, hardware and software developers

have to respectively provide and uncover parallelism, and correctly exploit the memory hier-

archy. While general-purpose processors feature caches, dedicated accelerators instead rely

on carefully-tuned memory management as well as on-chip and off-chip data movement. In

both cases, it is up to the hardware designers and application developers to make the best

usage of bandwidth: they must seek to use every cycle to transfer useful data on the memory

interface.

Compilers have largely improved over the 2010 decade in terms of both automatic par-

allelism extraction and cache utilization. In particular, they have control over the memory

access pattern, which is the sequence of memory accesses performed by the accelerator. By

leveraging value reutilization, they reduce the volume of data transiting through the memory

hierarchy. This is not sufficient to get the best performance out of the memory subsystem.

Designers and developers still have to manually perform memory allocation, that is, specify-

ing where (physical chip, bank) and in which order (layout) the data used by their accelerator

is stored. A good data layout has a significant impact on performance: it makes it possible

to get contiguous, regular access patterns, leveraging the highest performance out of caches,

prefetchers and controllers.
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Memory architectures are also evolving and diversifying: high-performance computers are

moving away from a central memory of a single type, to multiple memory chips close to the

processing units, each with its own bandwidth and random access latency. The performance

of a certain program depends on its utilization of the specific type of memory available and

the memory architecture.

Tuning the data layout in memory has been known to improve performance of numerous

programs, but remains a difficult problem to this day. Purpose-built layouts for specific

applications exist, but automation is desirable. In this document, we propose generic memory

layouts that improve bandwidth utilization, and automatically derive such layouts from the

programs themselves using compiler analyses.

This chapter motivates and gives an overview of this Ph.D dissertation. Section 2.1

details and motivates the specific problems that are solved in this document; Section 2.2

gives an overview of the solutions proposed.

2.1 A need for further memory optimizations

In this section, we explain the continued necessity of optimizing memory accesses. While

there is an immediate challenge caused by the continued increase in pressure on memory due

to more parallelism being exploited, there is a long-term challenge posed by the widening of

the space of memory architectures. New memory architectures will be under-utilized unless

the data layout and access pattern are carefully tailored to them.

The next two subsections detail this argument; Sections 2.1.3 and 2.1.5 focus on the

specific problems caused by data layout and access patterns.

2.1.1 An increasing pressure on memory due to parallelism

Processor chips keep containing more logic cells, mainly due to progresses in silicon

manufacturing. Thanks to these area gains, more computation units can be put in the

same silicon space. These units are designed to operate in parallel; in order to get the best
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performance from this silicon, a program needs to fully exploit its compute units, and must

therefore exhibit parallelism.

New hardware is massively parallel

Current architectures leverage multiple levels of parallelism, from low-level vector oper-

ations to high-level parallel nodes in a machine cluster.

On CPU and GPU platforms, the parallel computation units are grouped in vector units,

that can perform the same instruction on multiple operands. This model is called Single-

Instruction, Multiple Data (SIMD). On FPGA and ASIC designs, parallel computation

units are explicitly specified, and it is the job of the hardware developer to ensure that all

processing units and memories can be actively used at all times. Large-scale systems feature

many of these chips that all run in parallel, which adds another layer of parallelism to exploit,

and more parallelism to be exhibited by the program.

Hardware designers also have optimizing compilers at their disposal called high-level syn-

thesis (HLS) engines. These transform imperative code like that executed on CPU or GPU

into a hardware architecture; in doing so, they also rely on parallelism extraction techniques.

Section 3.3 covers some of their specific optimizations to produce parallel hardware. Deriving

a parallel architecture and fully utilizing it are two interdependent challenges; there is active

research on HLS tools with respect to scheduling and resource sharing ([44, 60, 82, 87]. . . ).

Auto-parallelization increases memory pressure

Automatic extraction of parallelism has significantly evolved thanks to active and contin-

ued research for more than 30 years; such automation reduces the burden on the developer,

who no longer has to explicitly state where the parallel computations can happen in the

program. A series of optimization passes exist in this regard.

Optimizers and frameworks exist to leverage various levels of parallelism:

• Data-level parallelism: loop vectorization, which has been part of state-of-the-art com-

pilers for years [6] and usually makes parallel computations in a loop explicitly appear.
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Superword-level parallelism extraction [46] can group together isomorphic, parallel op-

erations and issue a vector instruction for them.

• Instruction-level parallelism: a superscalar CPU can execute multiple instructions in

parallel in its various execution units. Part of this parallelization task is done in out-

of-order CPUs by the re-order buffers (ROB), provided they can find independent,

non-conflicting instructions in the program. Compilers can also re-order instructions

to extract ILP; this is especially used for in-order processors, like very-long instruction

word (VLIW) processors ([59]).

• Thread-level parallelism: Loop tiling [41], on top of reducing memory accesses of a pro-

gram by making it cache-friendly, gives coarse-grain parallel workloads implementable

as parallel threads. Calls to OpenMP make it easy to exploit the parallelism leveraged

by tiling.

The exploitation of each level of parallelism increases the memory traffic. To process more

operands at a time, the processor needs to get these operands from its memory hierarchy,

which must in turn handle all this extra traffic without becoming a bottleneck. When this

happens, the design is said to be memory-bound.

2.1.2 A widening space of memory architectures

New workload-specific memory technologies

Memories have intrinsic characteristics: access latency, bandwidth and capacity. How

each system is manufactured determines these three parameters, that are in a tradeoff: a high

bandwidth requires parallel access to a large number of data, and therefore a partitioning

of the data within the memory. Partitioning increases the random access latency due to

additional arbitration and multiplexing. Higher capacities also increase the multiplexing

needs, and in turn the latency.
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Table 2.1: Benchmark figures of various memory technologies (DDR4, HBM) and platforms (U280
board, Amazon F1 datacenter platform).

Technology Bandwidth Latency Capacity Usage
U280 DDR4 [52] 38 GB/s 110 ns 32 GB Main memory

Amazon F1 DDR [15] 57 GB/s 561 ns Variable (GB) Accelerator memory
U280 HBM [52] 612 GB/s 108 ns 8 GB Accelerator memory

Each component in a system has its own bandwidth and latency requirements: for in-

stance, CPUs tend to perform random accesses and need low access latency, while GPUs

tend to perform regular access patterns and need a higher bandwidth. To cope with all these

usages, a wide variety of memory technologies are simultaneously being developed. Table 2.1

shows benchmark results on various platforms using different memory technologies; latency,

bandwidth and capacity can significantly vary from one platform and memory technology to

another.

In order to get the best performance from these memory chips, how the programs use

memory has to be tailored to the chosen technology.

More complex memory subsystems

Memory chips are generally part of a memory subsystem so that various components can

access them. Central memory subsystems are among the most commonly implemented: a

machine has a central memory all of its components (e.g., CPU, GPUs, daughter accelerator

cards) can use, with a high latency, low bandwidth and high capacity. The pressure on

such central memories and their limited bandwidth cause contention, hindering application

performance.

Historically, caches and prefetchers have reduced the pressure on central memories; these

features are private to each chip, and fail to address the contention issue where multiple

accelerators exist, for instance in Systems-on-a-Chip (SoCs).

Distributed, networked memory subsystems are being developed to increase the overall

bandwidth and relieve contention, in both small-scale systems (network on chip, NoC) and

large-scale systems (software-controlled memory accesses).
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On top of those challenges posed by individual memories, complex systems add a place-

ment problem: accessing a random location in a complex subsystem has a high latency cost,

even more so if the data is in a remote node of a distributed memory system. Adapting the

placement of data within the subsystem becomes crucrial to get performance.

2.1.3 Bandwidth-bound FPGA accelerators

On current architectures, the literature contains a significant number of references to

bandwidth-boundness, particularly regarding FPGA accelerators. Two main memory sub-

systems surround FPGA accelerators today: DDR memories, shared with the rest of a

System-on-a-Chip such as Xilinx Zynq ; and the newer high-bandwidth memories, mostly

available on high-end FPGA boards.

Cong et al. [19] evaluated DDR-based FPGAs and Graphics Processing Units (GPUs)

by means of a benchmark suite called Rodinia, and bandwidth appeared to be a bottleneck

on most tested benchmarks; an increase in available bandwidth to that promised by High-

Bandwidth Memory (HBM), provided it is exploited, would lead to three FPGA benchmarks

surpassing GPU at a better performance per watt ratio.

Some applications are intrinsically bandwidth-bound because they expose little reuse of

their input data. This is the case of matrix-vector multiplication, used for instance in the

fully connected layers of convolutional neural networks. Each element of the matrix is only

used once, and therefore this application is known to be memory-bound on recent DDR-

based FPGA platforms: in 2019, design space exploration for the Caffeine framework [86]

to optimize the convolution part of a neural network on FPGA, resulted in the observation

that all designs proposed by the framework would be bandwidth-bound. Acceleration of

SpMV on FPGA is still an issue in 2023 [48], calling to a full utilization of the bandwidth

by exploiting sparsity and data compression.

High-Bandwidth Memory is available in off-the-shelf FPGA boards such as Xilinx Alveo

U280. While HBM increases the available bandwidth, it does not increase its utilization

12



unless data is spread over all banks. HiSparse [26] is an instance of FPGA accelerator class

for matrix-vector multiplication where such a partitioning is performed. Microbenchmarks

[52] show that a single HBM bank can reach about 14 GB/s whereas multiple banks can

give a 421 GB/s bandwidth. This underlines the need for an automated data layout and

placement.

2.1.4 Recent improvements in the utilization of memory subsys-

tems

When memory access is the bottleneck, all the available parallelism cannot be exploited.

To relieve this, the program must be optimized with multiple respects:

• Improving the access locality, re-utilizing values already on chip and reducing memory

accesses,

• Fully utilizing the memory subsystem when accesses are needed:

– Avoiding cache misses: the memory accesses must re-use recently accessed ad-

dresses,

– Using prefetchers: the sequence of accesses must be regular enough to be recog-

nized by the prefetching mechanisms,

– Exploiting the burst feature of memory buses: the addresses being accessed must

be adjacent to each other.

Compiler passes have been developed to automatically address the above issues. This

section gives a broad view of the optimizations they brought.

Improving the access locality

The first key to improving memory performance is to reduce the number of memory

accesses, thereby improving the program’s arithmetic intensity (AI) [78, 80]. Other ways to

describe this in the literature are improving locality or reducing the reuse distance, with a
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common idea that the closer in time the multiple accesses to a value, the more likely it is to

stay on chip registers or be present in a closer cache level.

Well-known locality optimizations promote memory to registers [53] and re-order instruc-

tions to re-use values freshly computed instead of sending them to memory. Value reutiliza-

tion is a key component of major production compilers such as GCC or LLVM today. On

FPGA accelerators, it is the developer’s task to specify which data movements must take

place as synthesis tools do not promote memory accesses to registers. The work of Wei et al.

[77] is an instance of deep neural network where memory accesses are saved by keeping some

intermediate results on chip. This approach involves partitioning the results with knowledge

of the consumers of the intermediate results. One of the approaches in this Ph.D dissertation

automatically computes such a partitioning and can be used for this purpose.

More advanced locality optimizations target caches. Loop tiling [41, 45] is one of them:

it aims at breaking up a loop nest into atomic blocks that have a known memory footprint,

typically the size of some level of cache. It is possibly applied at multiple levels [92], from

registers [42, 43] all the way to parallel nodes. It is applicable and can be profitabke on

CPUs as well as GPUs [36]. Although tiling can be applied purely as a loop transformation,

it changes the execution order within the loop nest. Prior analysis, possibly automated [11,

12] must assert that it is legal, and profitable. Section 3.4.3 covers tiling in more detail

using the polyhedral representation of a program. Tiling has made its way into production

compilers; it is notably implemented in Polly [33] part of the LLVM optimizing compiler.

Cache behavior is well-known, to the point it is possible to model and tune programs based

on analytical cache miss equations [32].

Improving access patterns

Locality optimizations determine which addresses (containing which values) will be ac-

cessed at a certain point in time. Re-ordering these accesses can exhibit regularity in the

address sequence and yield better performance.
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Regular access patterns enable usage of prefetchers and contiguous access patterns (more

restrictive than regular) enable the use of burst features, both improving performance.

Prefetcher-friendliness optimizations notably try to expose regularity in the memory accesses

that can be identified by the prefetcher.

Burst-friendliness is generally not an issue on CPUs and GPUs because the granularity

of memory accesses is at least a cache line. Therefore, burst-friendliness is a problem mostly

for FPGA and ASIC designs. Nevertheless, the fundamental issue at stake is not FPGA-

specific: data contiguity is necessary to get good vector unit performance. Auto-vectorizing

compiler passes such as superword-level parallelism (SLP) [46] extractors required such data

to be contiguous, as data movement or shuffling within vector registers incurs an overhead

that could lead to a slower code despite vectorization. More recent SLP extractors [49] can

change the data layout if the accesses are regular enough, e.g. with a constant stride. It is

also possible to re-order accesses within a DDR controller itself to exhibit bursts, and reduce

the access latency seen from the outside of the controller [20].

The optimizations above do not guarantee the absence of cache misses, burst- or prefetcher-

friendliness: how the data is laid out in memory can prevent the appearance of regular or

contiguous access patterns. The next subsection deals with the specific issue of data layout.

2.1.5 Application-specific data layouts increase bandwidth utiliza-

tion

A raison d’être of this Ph.D dissertation is that the choice of data layout in memory

affects memory access performance. As said in Section 2.1.3, irregular and non-contiguous

accesses prevent correct utilization of prefetchers, of auto-vectorizers but also cause high-

latency scalar accesses on global memories.

There have been various attempts at modifying the memory layout that resulted in

performance improvements. We give examples of them in the next subsections, and make
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the case that actually generalizing and automating them is a contribution towards fully

utilizing current and future architectures.

Domain-specific layouts for FPGA accelerators

Due to the massive parallelism FPGAs offer, they are prone to memory-boundness. The

literature contains a wide variety of methods to fully exploit the bandwidth of memories

connected to FPGA accelerators. They mainly rely on increasing spatial locality by exhibit-

ing data contiguity, which this dissertation largely covers. How this is achieved depends on

the application, of which two examples are given below.

One way to exploit memory contiguity is to build streams of data, where the order of

writing of the data is the same as the order of reading. It is possible thanks to works like

SODA [13], to get such layouts for FPGA accelerators of applications like dense linear algebra

or stencils.

An application that benefits from domain-specific layout is sparse matrix-vector product.

On top of exploiting sparsity to compress the matrix data, further optimization is done with

the layout of the compressed data, yielding a higher bandwidth utilization. It is possible,

like done in HiSparse [26], to partition the data to match HBM banks, thereby exploiting all

the banks of an HBM stack.

Fine-grain data layouts for vectorization

The works presented in this dissertation target domain-specific hardware accelerators.

Yet, the problem being tackled is more general. It is for instance possible to improve the

performance of instruction-set architectures in certain scenarios, such as vectorized programs,

by using specific data layouts.

Vectorization is exploitation of a chip’s vector units instead of equivalent scalar opera-

tions. It is achieved by using special instructions of the processor. Such instructions typically

consist in replicating a single operation over multiple operands, (“single-instruction multiple-

data”, SIMD).

16



While vectorization helps in improving compute unit utilization, it requires careful data

placement to limit the movement from, to and within vector registers. Solutions to this

problem exist for domain-specific applications; for instance, for stencil computations, a spe-

cific data layout for the vector registers, distinct from that of the original arrays, can reduce

the overall data movement from/to and within the vector registers [83].

2.1.6 The case for automation of memory layout optimizations

We make the case that memory layout optimizations should be made automatic, for the

same reason as other performance optimizations. Such optimizations are hard to write by

hand and, although nothing prevents the developer from applying manual optimizations,

compiler-based ones provide:

• “speed”: what would take a few hours or days for a human to design just takes seconds

(e.g., manual RTL design is orders of magnitude more time-consuming than HLS).

• explorability: it is posssible to automatically generate a wide variety of designs, eval-

uate them and pick the best one.

• applicability: a single compiler pass can generate a memory allocation, possibly using

target-dependent cost models but using the same optimizer code, and target-dependent

backends generate all the data movement code necessary to use an allocation.

How to automate the derivation of a good memory layout is an issue in itself. Compilers

can syntactically invert the dimensions of memory arrays using cost metrics [69]. Syntactic

manipulations may however not be sufficient; Polyhedral optimizers can produce complex

domains such as diamond tiles [9], and likewise complex access patterns, for which a complete

re-engineering of the memory layout is needed to obtain good memory performance.

In this dissertation, we propose to use the polyhedral representation of programs to

build memory layouts and propose algorithms and systematic methods to compute memory
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layouts. These techniques will work provided a certain number of hypotheses, determined

for each technique, are verified.

2.2 Contributions of this Ph.D

We have made the case for the necessity of automated memory layout optimizations.

Most of the contributions of this Ph.D. rely on one idea: like prior work generates parallel

code from the polyhedral representation of a program, it is possible to generate contiguous

memory layouts from the same polyhedral representation. Such contiguous layouts enable

domain-specific hardware accelerators to have a high bandwidth utilization.

Chapter 3 covers the technical background all of this document relies upon; Chapters 4

through 7 cover the solutions proposed by this Ph.D, of which a brief summary is given

below. They are described below, from the most restrictive scope of application to the least

restrictive.

2.2.1 A multi-level contiguous memory layout for rectangular tiles

In Chapter 4, we focus on programs tiled with a hyper-rectangular tile shape

and that have uniform dependences. For these applications, we can compute the flow-in

and flow-out data as parts of thick faces, called “facets”, of neighboring tiles. Therefore, we

allocate data for these facets in such a way to enable contiguity within them and across them.

These two levels of contiguity enable long burst accesses that result in a high bandwidth

utilization, while keeping and a low redundancy. This allocation scheme is called Canonical

Facet Allocation (CFA).

We propose an evaluation of this allocation scheme with an FPGA implementation of

benchmark accelerators as task-level pipelines. For these, the external I/O phases (off-chip

CFA from/to on-chip allocation) are generated using a compiler pass, and show that we are

able to reach close to bus bandwidth.
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2.2.2 An irredundant, atomic partitioning of inter-tile communi-

cations for arbitrary tile shapes

In Chapter 5, we consider programs tiled with arbitrary shapes, rather than rect-

angles as required by Chapter 4. Based on the observation that only a part of the flow-out

of each tile is used by every of its consumer tiles, we proposes a breakup of these flow-in

and flow-out sets that guarantees atomicity and irredundancy properties, and a method

to construct such a breakup. The resulting sets, called Maximal Atomic irRedundant Sets

(MARS), can be used in a variety of applications among which memory allocation, but also

error detection.

2.2.3 A compressed and contiguous memory layout for arbitrary

tile shapes

Chapter 6 is a use case of the MARS: it introduces a memory allocation based on

the MARS that exploits its irredundant and atomic natures. These two properties allow

for contiguity, data packing and compression, thus increasing the bandwidth utilization

and decreasing the volume of data. This chapter brings in two contributions: through

an optimization problem, it exploits the MARS irredundancy to minimize the number of

input and output transactions for each tile; and, the atomicity property is exploited by

automatically compressing and packing the data. A code generator is implemented and the

resulting allocation and access pattern are evaluated on a selection of FPGA accelerators.

2.2.4 An extension of the data flow partitioning to affine depen-

dences

One limitation of MARS is that it does not apply to affine dependences, that make up

most of the input data on workloads such as matrix multiplication. Chapter 7 extends the

idea of atomic irredundant partitioning to data spaces with affine dependences.

Affine dependences bearing several properties (notably sharing the same null space) can yield
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such a decomposition; in this case, Chapter 7 proposes a method to partition the data into

MARS. This chapter’s theoretical contribution makes it possible to propose a data layout

for the entire data flow with the same objectives as the one obtained in Chapter 6.
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Chapter 3

Background

This dissertation relies on a fairly large stack of technical background: it uses both low-

level hardware design techniques and high-level mathematical representations of programs.

Between these, multiple levels of abstraction are involved and interact together. All of these

levels of abstraction are necessary to efficiently use all the compute power of accelerators.

This chapter aims at explaining the abstraction stack and giving design techniques related

to memory accesses.

It first covers hardware memory architectures, their interfaces and controllers. It goes

through the synthesis of compute and memory architectures from high-level code, then covers

the high-level polyhedral abstractions used to analyze and transform the source program;

finally, it explains how high-level transformations can have a controlled effect on low-level

memory accesses.

3.1 Locality and performance

The performance of a program on a platform, i.e. how many computations it can perform

per time unit, is determined by how the compute power of the platform and how the memory

subsystem are utilized. In this dissertation, the focus is on the memory subsystem and

locality optimizations; this section gives an insight into the effects of these optimizations on

performance.

3.1.1 Roofline model

Quantiying the performance of a program is necessary to determine which kind of opti-

mizations are needed, i.e. where there is room left for performance gains.
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Figure 3.1: Roofline model

The roofline model [78, 80], illustrated on Figure 3.1 is a visual way to see the effects of

locality improvements. The throughput a system can reach is bound when either a memory

roofline or a compute roofline is hit. Compute rooflines represent the maximal throughput

attainable with a given set of compute units; in the case of hardware designs, the maximum

number of compute units that fit a given area budget are considered. Memory rooflines

represent bandwidth caps intrinsic to the memory subsystem; there is one such roofline per

level of the memory hierarchy.

To figure out the position of a program or hardware design in such a graph, one must

compute its arithmetic intensity (AI), which is defined by:

AI =
number of arithmetic operations

volume of I/O

A higher AI generally means a better achievable performance, thanks to a reduced likelihood

of memory-boundness.

Memory-boundness results in an under-utilization of the on-chip parallel compute re-

sources due to stalls; using a roofline graph, it is possible to explain how improving both

spatial and temporal locality can relieve memory-boundness. The next subsection focuses

on the two notions of spatial and temporal locality.
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3.1.2 Access locality

The performance of memory accesses largely depends on how close together they are, in

both time and space; correct utilization of the memory subsystem by improving the sequence

of addresses in both time and space results in a good performance. There are two qualitiative

notions of locality used to characterize the utilization of the memory subsystem by a program

or accelerator.

Temporal locality characterizes how close in time the same addresses are being re-used by

the program with a re-use distance. The lower this distance, the more likely the data is to be

in a close level of cache; if the reuse distance is low, the data may still be available in on-chip

registers. Improving temporal locality reduces the number of global memory accesses, and

therefore increases arithmetic intensity. As shown in Figure 3.1, a higher temporal locality

gives potential access to higher compute performance by limiting the pressure on memory.

Spatial locality, on the other hand, characterizes how close in space consecutive addresses

being accessed are. If addresses are all adjacent to each other, the program has better locality

than if they are not. For instance, a unit-strided access sequence has better spatial locality

than a two-strided sequence, because the latter sequence does not exhibit any contiguity.

In Figure 3.1, the effect of spatial locality on performance can be seen as the bandwidth

utilization increases, thereby giving access to more compute power for the same arithmetic

intensity.

3.2 Memory architectures and transfers

A memory architecture usually encompasses the storage locations of all active data with

the exclusion of cold data stored on disks. Such memories are of the following type:

• Disk, usually for swapping. These have low throughput (hundreds of MB/s for me-

chanical disks to 32 GB/s for PCIe SSDs), very high access latency (milliseconds) and

very high capacity (terabytes);
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• DDR random access memory. This is where the bulk of a system’s memory resides.

It is attached to the main processor system or is on some daughter card, e.g. a GPU.

It has high throughput (up to 128 GB/s), low latency (below 1 microsecond) and low

capacity (below 1 TB usually).

• HBM random access memory. These have very high throughput (more than 500 GB/s)

and a higher access latency than DDR (up to a microsecond) due to extra arbitration,

while being usually smaller than regular DDRs. These are used for high-throughput

processing.

• Caches, that are embedded on CPU or GPU chips. These have low access latency

(nanoseconds) and low capacity due to the area they take and the expensive logic

needed to manage them.

• Registers, that are located right next to the compute units. These have the lowest

latency (ideally same-cycle access) but are also the rarest storage resource. They

are the only type of memory onto which operations are directly performed, barring

compute-in-memory engines.

Registers are driven by the compute engines themselves, to which they belong. Other

kinds of memories need controllers to be accessed.

3.2.1 High-bandwidth controller features

Memory controllers geared towards high bandwidth accesses feature ways to hide access

latency of individual memory addresses, mainly by using some sort of pipelining. Burst-mode

accesses and transaction-level pipelining are usually available; this subsection describes both

features.

Burst-mode transactions

Memories are seldom dedicated to a single component, and are more usually connected

to shared buses. Transaction-based shared buses require the use of two-way handshaking
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(b) Burst access pattern: multiple values are retrieved from consecutive addresses (101 to 104), without
latency between each value. There is still a latency between accesses (non-contiguous in this example).

Figure 3.2: Burst accesses span over multiple addresses in a single transaction, amortizing the
transaction latency over all elements accessed.

protocols before data transfer can begin. Arbitration and access protocols ensure that there

are no access conflicts. During this time, the data transfer unit on the accelerator side is

idle, as between data transfers in Figure 3.2a.

To amortize the access latency, shared buses usually feature burst-mode accesses, which

perform several back-to-back accesses at consecutive addresses, as illustrated in Figure 3.2b.

In order to use this burst mode, the accelerator must know:

• how much data it needs to transfer,

• which address is the first one to be accessed.

In first approximation, the latency of such accesses is modelled as an affine function: to

transfer Nwords, the number of cycles will be:

tburst(Nwords) = thandshake +
Nwords

words per cycle

It is clear that the bigger Nwords is, the lower the impact of thandshake and the higher the

bandwidth utilization.
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It is possible to hide the latency caused by the handshake protocol by overlapping actual

data transfers with subsequent requests. Such overlapping can be compared to a two-stage

access pipelining, splitting requests and transfers. This feature is present in the AXI4 bus,

and exploited by some high-level synthesis tools described in the next section. Notably,

when the end of a burst is contiguous to the start of the next burst, the tools generally can

schedule them in a pipeline.

3.3 High-level synthesis

Generating hardware is usually done at the register-transfer level (RTL). This level of

abstraction is very low and it is very difficult to reconstruct the algorithm from an RTL

representation. This prevents rapid exploration of the design space, and requires skilled

engineers to build hardware devices.

Well-known languages in the computer science field are mostly imperative languages such

as C or C++. These languages do express the what of the program, i.e. which operations

should happen on which operands, and abstract away the how which is bit manipulations.

RTL on the other hand expresses the how and does not contain the what. When we want

to design a piece of hardware, we start from the algorithm and go down to the bitwise

operations that it needs to execute.

High-level synthesis (HLS) consists in automating hardware synthesis from an imperative

language, and generating RTL from this language. Commercial tools such as Vitis HLS and

Catapult accept C and C++ code as input, mostly due to these languages being used in

embedded systems development and well-known from the EDA field.

3.3.1 From C/C++ to an architecture

Imperative languages specify an ordered sequence of instructions which lead to some

result being computed. Control structures allow the program to repeat sub-sequences of

instructions (loops) a finite number of times or until some condition is met, and also to
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selectively execute sub-sequences depending on conditions. It is possible using finite state

machines to represent such programs that will execute the same sequence; the HLS engine

will extract this representation; generating the corresponding RTL from a state machine is

then a syntactic operation.

Doing this however leads to a purely sequential hardware accelerator with poor perfor-

mance. It is necessary to express parallelism to get better performance.

C and C++ do not intrinsically express parallelism; it is difficult to figure out whether

two operations can be executed in parallel or not, and which operations another one depends

on before it can be executed. The developer, as well as some tools, knows these dependences.

Special directives called pragmas are used to pass these hints to the HLS engine.

The core of an HLS engine does three main tasks to leverage RTL from imperative code:

it creates the operators asked for by the user, schedules the operations, and binds each

operation to an operator. While C and C++ contain the sequence of operations, scheduling

and architectural directives exist to generate performant accelerators.

Architectural directives

Two kinds of parallelism can be expressed as compiler directives: synchronous parallelism

(replication) and pipelining.

Replication, achieved by unrolling a loop, creates multiple copies of the same piece of

hardware that run in parallel, as in Figure 3.3. For this operation to be profitable (i.e. result

in an increase of throughput), consecutive loop iterations must not depend on one another;

also, it increases resource usage because multiple hardware operators are needed to perform

multiple operations in parallel.

Pipelining, shown in Figure 3.4, allows multiple consecutive iterations of a loop to be

overlapped, by splitting each iteration into smaller operations called stages. Each stage

executes an operation for a different loop iteration. Contrary to unrolling, pipelining does

not require additional operators: it schedules a different loop iteration on each operator. For

two iterations to be in the pipeline at the same time, they must be parallel, which means
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1 for(int i = 1; i <= N-1; i++) {

2 #pragma HLS UNROLL

3 A[i] = (B[i-1]+B[i]+B[i+1]) /3;

4 }

+ + /

+ + /

+ + /

… … …

A[1]

A[2]

A[N-1]

…

Cycle C1 C2 C3 CN CN+1…

Figure 3.3: Loop unrolling in HLS creates parallel operators, and executes the loop iterations in
parallel provided they are independent.

1 for(int i = 1; i <= N-1; i++) {

2 #pragma HLS PIPELINE II=1

3 A[i] = (B[i-1]+B[i]+B[i+1]) /3;

4 }

+ + /

+ + /

+ + /

…

A[1]

A[2]

A[N-1]

…

Cycle C1 C2 C3 CN CN+1…

Figure 3.4: Loop pipelining in HLS overlaps multiple iterations of a loop, starting a new iteration
every II cycles (here II=1), provided there is no dependence between them.

that the reuse distance (number of operations between the production of a value and its first

use as an operand) is greater than the pipeline’s depth.

It is possible to have multiple levels of pipeline, at different granularities. Fine-grain,

data-level pipelines split operations on scalar elements to increase the processor’s through-

put. A coarse-grain, task-level pipeline is usually applied to high-throughput accelerators

to multiplex input/output operations and computations, thereby hiding the I/O latency.

Figure 3.5 shows such a “read-execute-write” pipeline, typically obtained with the following

code:
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Figure 3.5: Task-level structure of an accelerator: read, execution and writeback happen sepa-
rately.

1 void hls_toplevel(float* d_in , float* d_out , int i, int j) {

2 #pragma HLS INTERFACE m_axi port=d_in bundle=bus_ctl

3 #pragma HLS INTERFACE m_axi port=d_out bundle=bus_ctl

4 #pragma HLS DATAFLOW

5 float input_arr [20][20];

6 float output_arr [20][20];

7 input(d_in , i, j, input_arr);

8 process(input_arr , i, j, output_arr);

9 output(d_out , i, j, output_arr);

10 }

Scheduling directives

An HLS engine is primarily used to create parallel architectures. However, even if multiple

replicas of an operator are generated, they may not be used if the operations to be executed

are indeed not parallel, i.e. they depend on each other. The HLS tool can, to some extent,

recognize when there is such a dependence. In order to guarantee the correctness of resulting

designs, an HLS tool is conservative and will assume dependences that do not exist; it will

also fail to see dependences arising outside of the program, for instance due to side-effects

or protocols.

The DEPENDENCE pragma can be used to indicate, within a loop, whether a variable

depends or not on another one.
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For instance, in the following loop, the array A is used in both read and write directions

by the same statement, and the DEPENDENCE pragma indicates that no read-after-write de-

pendence exists on this variable, i.e. that none of the read accesses to A depend on a write

within this loop.

1 for(int i = 1; i <= HALF - 1; i = i + 1) {

2 #pragma HLS DEPENDENCE variable=A type=RAW inter false

3 A[HALF + i] = (A[i - 1] + A[i] + A[i + 1]) / 3;

4 }

3.3.2 Memory accesses in HLS

The usual programming model for CPU architectures assumes a single virtual memory

space into which all data is contained. A compiler then generates data movement code from

memory to registers and vice-versa; the cache hierarchy is usually transparent and no code

is necessary to manage caches.

FPGA architectures, like GPUs, contain scratchpad memories which management is ex-

plicitly specified by the developer: data movement in and out of local memories needs to be

specified. Global memories, on the other hand, are accessed behind shared buses and the

traditional memory model can be used on them.

The limitation of local memories is the number of ports (parallelism), whereas the limi-

tation on global memories is the access latency.

Local memories

C and C++ do not have specific directives to specify the placement of data on local

scratchpads and its distribution. An HLS tool like Vitis provides ways to automatically

partition the C/C++ arrays into a finite number of scratchpads, which increases the number

of available ports at the cost of a higher resource usage.
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Global memories

Vitis HLS also provides global memory access directives to enable shared bus interfaces

(such as AMBA, AXI); when such a directive is used, burst mode access (see Section 3.2.1)

becomes available. Burst-mode accesses need to be supported by downstream bus controllers

and memories. High-bandwidth controllers and chips, such as DDR and HBM chips, typically

feature burst accesses.

Using burst mode is essential to get good access performance, as it amortizes the access

latency of a single transaction over all data that is being accessed. In order to use it, the HLS

engine must recognize a burst access, which is possible with one of the following constructs:

• A unit-strided loop with the counter being used as an address (e.g., a loop iterating over

an array and copying an off-chip array into an on-chip buffer), and such that pipelining

with an initiation interval (II) of 1 cycle (one new word each cycle) is possible:

1 for(int i = 0; i <= 9215; i = i + 1) {

2 #pragma HLS PIPELINE II=1

3 onChip[i] = offChip [5+i];

4 }

• A call to a system library (memcpy()):

1 memcpy(onChip , offChip + 5, 9215 * sizeof(float));

Note that bursts may be generated for loops where II ⩾ 2, but the throughput will be

divided by II in this case.

Use of multiple layouts

High-performance accelerators must feature high-bandwidth accesses as well as high par-

allelism. It is therefore necessary to lay out the data on chip in such a way that parallel

accesses are possible, while preserving contiguous accesses on the off-chip memory.

When such layout changes are implemented, they happen on the accelerator’s side. Ac-

cesses to local memories and registers do not feature burst mode, and therefore do not need to
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Figure 3.6: Changing layouts is necessary to get both contiguity and parallelism.

be contiguous. The HLS engine generates the routing and arbitration necessary to dispatch

the data from a single global memory bus to on-chip distributed memories.

The layout separation and changes make it possible to decouple the search for off-chip

and on-chip layouts.

3.4 Polyhedral model and tiling

High-level synthesis is done from code written in imperative languages. This abstraction

can describe the exact sequence of computations and memory accesses to be peformed; yet,

it fails to capture data flow information, which is the uses of every produced result, when

every intermediate result is needed, which statement will use it, and when it will no longer

be used and can be discarded.

Capturing data and control flow in a closed-form representation allows a compiler to work

with programs as mathematical objects. One such representation is the polyhedral model,

in which programs are represented with two kinds of mathematical objects: sets, on the one

hand, and relations, on the other hand.

3.4.1 Abstractions

A polyhedral representation of a program comprises at least the following elements:

• An iteration space, which is a union of subsets of Zd, each point of which represents

one instance of a program’s statement (one specific valuation of the loop iterators),
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• Data spaces, each of which is associated to a variable in the program. Each space is a

subset of Zn, and each point in this space is a cell in the corresponding C-style array.

• A schedule, which is an affine function mapping each iteration to an integer or a vector

of integers, specifying a relative order of execution of iterations,

• Array access informations (reads and writes) in the form of affine maps from the

iteration spaces to the data spaces.

The polyhedral model requires sets of integer points and relations defined by affine con-

straints, which means that the relations between sets (memory access functions, dependence

graph) are all affine. It specifies in what space and which order computations happen, but

does not necessarily specify what is being computed. For this, it may be completed by

equations, in which case it is a polyhedral equational model. An example of such a model is

Alpha [47, 55].

We can consider two levels of polyhedral abstraction:

• The conventional polyhedral model, that is composed of a finite collection of state-

ments (S), each having its own iteration space (DS). Statement operations are ab-

stracted away, except the memory accesses, i.e. reads (RS) and writes (WS) that

take the form of affine maps. The program’s variables (A), scalars or arrays, make up

the data spaces DA. For instance, the array int A[200][100] is mapped to the set

{A[i, j] : 0 ⩽ i < 200 and 0 ⩽ j < 100}. The statements reads and writes maps have

their domains in DS and their ranges in DA. The model also comprises a schedule that

is a partial order of the iteration space D =
⋃

S DS.

• The equational polyhedral model, that is composed of variables A, each defined over

a domain DA and which value at every point in DA is given by an equation.

In this manuscript, we will only be considering the classical polyhedral model, that can

be extracted from a sequential program using tools such as PET [75].
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Figure 3.7: Iteration and data spaces in the classical polyhedral model. A memory map gives
each data space point an address.

3.4.2 Modelling Dependences

In a C/C++ program, statements may have dependences between themselves, in the

sense that one statement needs the result of a previous one as an operand. It is possible

to model these dependences using affine relations; considering each instance of a statement

has an iteration point in the iteration space, a depenedence relation will map the producer

iteration point to the consumer iteration point.

Such dependence functions can be constructed algorithmically.

There are two families of dependences:

• “True” dependences, or flow dependences: these arise from the computation itself.

They are intrinsic to the program. For instance, a recurrence equation xi = xi−1 + 2

carries a dependence (i− 1) 7→ i. In a C/C++ program, these dependences are called

read-after-write.

• Memory-based dependences: these arise from the memory allocation. When multi-

ple iterations of a statement update the same memory cell, and the value contained

at a given moment is used to compute another value, the source value must not be

overwritten before that computation is done. These dependences are called write-

after-read. Also, the order of writes into a cell may need to be preserved. This incurs

write-after-write dependences.
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Dependences prevent parallel executions of iterations: when an iteration, directly or

indirectly, depends on another, these two iterations must be executed in sequence for the

result to be correct.

Memory-based dependences are avoidable dependences: the memory allocation can be

constructed independently of the computation itself. This dissertation largely relies on this

fact and creates fresh memory allocations to favor memory bandwidth utilization.

True dependences, on the other hand, cannot be avoided. The polyhedral representation

can however be transformed to find parallel iterations despite the existence of dependences.

3.4.3 Tiling

Tiling [41, 63, 68, 79] is a transformation of the polyhedral representation of a program

that breaks up its iteration space into tiles, where each tile is atomic with respect to depen-

dences. Such atomicity allows, for instance, synchronization-free execution of independent

parallel tiles on different processors.

Tiling is implemented in most state-of-the art polyhedral compilers [11, 12, 33]. This sub-

section explains the principle of tiling, gives an optimization problem to tile for performance,

and explains the consequences of tiling on the program’s data flow.

Principle

Tiling is a program transformation that seeks to increase parallelism, locality and reuse.

It consists in splitting an iteration space in similarly-shaped blocks, each of which containing

a certain number of iterations. Such blocks must be able to be executed atomically, in such

a way that multiple tiles may be executed in parallel.

Loop tiling increases both access locality and reuse. It can be applied at multiple levels,

for instance to leverage thread-level and instruction-level parallelism at the same time.

Tiling for thread-level parallelism is done so that the footprint of each tile fits in a local

memory dedicated to this thread. It may be the L1 or L2 cache in a CPU, or a scratchpad

memory in a GPU.
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Legality Tiling must respect causality between iterations; therefore, it is not always legal.

Because tiles are atomic, there must in particular be no dependences in the PRDG that

would cross a tile boundary both ways, as in Figure 3.8.
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Figure 3.8: Rectangular tiling (cutting with a family of hyperplanes Hi : i = 4k, k ∈ N and
Ht : t = 3p, p ∈ N) is illegal on the left, and becomes legal on the right after time skewing.

Mathematically, tiling cuts the iteration space into two subspaces, each one on one side

of an hyperplane. In a two-dimensional space, a hyperplane is a line; in a three-dimensional

space, a hyperplane is a plane. Tiling legality is checked by projecting the dependence

vectors onto a vector perpendicular to the tiling hyperplane. All the dependencies must be

in the same direction with respect to that vector (which means that they all cross the tiling

hyperplane the same way, or don’t cross it at all).

A tiling hyperplane H is legal if, for all dependencies b⃗i the following property is true.

Let c⃗ be a vector orthogonal to H (by definition of a hyperplane, there is such a vector).

Then: 





∀i, b⃗i · c⃗ ⩽ 0

or

∀i, b⃗i · c⃗ ⩾ 0

This means that we can “cut” the space into two along the hyperplaneH and all dependencies

that cross the hyperplane, do so in the same direction.
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Multiple tilings can be applied to the same iteration space: in a two-dimensional iteration

space, it is possible to obtain two-dimensional tiles, for instance those in Figure 3.8.

Rectangular tiling

Rectangular tiling is the simplest kind of tiling: each tile is an hyper-rectangular block

within the iteration space. The families of tiling hyperplanes are all parallel to one canonic

axis. Figure 3.8 shows an instance of rectangular tiling with a Jacobi-like dependence pattern.

Rectangular tiling does not require a polyhedral representation; it can be syntactically

performed as the composition of two loop transformations, loop strip-mining and loop inter-

change. For instance, in Figure 3.9, the loops over i and j have been tiled with tile size 4,

resulting into outer loops over ii and jj with a step of 4 and outer loops over i and j.

int i, j;

for(i=1; i<25; ++i) {

for(j=0; j<33; ++j) {

B[i][j] = A[i-1][j]

+ A[i][j] + A[i+1][j];

}

}

int ii , jj , i, j;

for(ii=1; ii <25; ii+=4) {

for(jj=0; jj <33; jj+=4) {

for(i=0; i<4; ++i) {

for(j=0; j<4; ++j) {

B[ii+i][jj+j] = A[ii+i

-1][jj+j]

+ A[ii+i][jj+j] + A[ii+i

+1][jj+j];

}

}

}

}

Figure 3.9: Rectangular tiling applied to two dimensions of a loop nest.

Other kinds of tiling such as diamond tiling [9] exist, with different stances on the par-

allelism / locality tradeoff.

Tiling for Parallelism and Locality

Impact of tile size on performance Common wisdom with tile size selection says that

it is done in such a way that some level of cache or some local memory is filled with data.

This is not always true, however. The issue of tile size selection is well-studied, e.g. [16]
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or [56]. This chapter provides techniques where we assume good tile sizes can be found

through exploration.

The data space size also has an influence on performance: tiling, especially with powers

of two as tile sizes, may result in poor performance due to a large amount of cache misses,

despite the tile fitting in the cache. This phenomenon, called cache set conflict, is due to the

cache associativity, and can be avoided by padding the data arrays [37, 65].

Automatic selection of tile shape and size Tiling hyperplanes and sizes can be algo-

rithmically tuned to enhance parallelism and locality. PLuTo [11, 12] is one of the most used

tiling algorithms, that maximizes parallelism across tiles and locality inside the tile; it will

select tiling hyperplanes such that the number of dependences that cross each hyperplane is

minimal.

Data Flow in the polyhedral representation

A tile is a collection of iteration points, i.e. instances of statements that require input

values and produce output values. These values may come from other statement instances, be

used by other statement instances, or be program input or output. For individual statement

instances (individual iterations), these inputs and outputs may be both internal to the tile,

(i.e. the producing iterations are inside the tile) and external. In the latter case, external

production or consumption means that the results need to be communicated, for instance

through global memory.

We call flow-in and flow-out iterations those that, respectively, require values from itera-

tions external to the tile and produce values consumed by iterations external to the tile. The

flow-in set and flow-out set (as shown in Figure 3.10), proper to each tile, are the collections

of, respectively, all flow-in and flow-out iterations.

3.4.4 Notations

Throughout this document, the notations and conventions of Table 3.1 will be used.
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Table 3.1: Notations used throughout this document

Symbol Description Remarks
S Statement Imperative language statement in the source

program.
DS Statement iteration domain Subset of Zd, also called iteration space for

that statement.
d Iteration space dimensionality Number of surrounding loops for a statement.
e⃗i Basis vector e⃗1, . . . , e⃗d is the canonical basis of D.
D Iteration domain Union of iteration domains of all statements.
x⃗ Iteration An instance of a statement for a specific val-

uation of its iterators: x⃗ = (x1, . . . , xd). In
particular, x⃗ ∈ D.

A Variable Symbol used in the source program.
DA Data space of variable A Subset of Zd, where d is the number of dimen-

sions of A.
RS Reads of statement S RS : DS →

⋃

A∈Variables DA

WS Writes of statement S WS : DS →
⋃

A∈Variables DA

Aff(D,E) Affine functions D → E Denotes all affine functions from space D to
space E.

ker(A) Null space Set of points which image by A (linear part of
an affine function) is the null vector, 0⃗.

B Dependences Set of dependence relations. Also called de-
pendence polyhedron in the literature.

Q Number of dependences

b⃗ Uniform dependence vector Notation used when a dependence function is
a translation (uniform). Then, b⃗ ∈ B.

B(x⃗) =

Ax⃗+ b⃗
Dependence function Notation used when a dependence function is

affine. Notably, B ∈ B.

H Tiling hyperplane Defined by its standard equation
∑d

i=1 aixi =
0.

n⃗ Normal vector Unit vector normal to hyperplane H.
n⃗ Scaled normal vector Vector normal to hyperplane H, that trans-

lates by one tile in the space.
t Number of tiling hyperplanes

t⃗ Tile coordinates t⃗ = (i1, . . . , it).

T (⃗t) Tile Defined by {x⃗ ∈ D : ∀i ∈ [[1; t]] : tisi ⩽ x⃗ · n⃗i <
(1 + ti)si}

T Tile space Set of all t⃗s.
T Interior tiles Tiles that have no intersection with the itera-

tion space’s boundaries.
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j

Figure 3.10: Flow-out set of a tile with a Smith-Waterman dependence pattern. Dependences
pointing to other tiles are shown producer to consumer:.

Table 3.2: Polyhedral transformations needed to obtain a given HLS target

HLS target Polyhedral transformation
Task-level pipeline Coarse-grain loop tiling

Parallel loop iterations Parallel scheduling change of basis
Pipeline initiation interval ADA & scheduling minimizing reuse distance
Memory acccess pattern Data space change of basis

3.5 Polyhedral compilation and accelerator synthesis

The toolkit used in this dissertation comprises distant abstractions, from high-level poly-

hedral abstractions to low-level synthesis techniques.

The tools used to bridge these abstractions are called polyhedral compilers. They are

optimizing compilers, that extract and process a polyhedral model from an imperative pro-

gram, and are usually source-to-source as their output is imperative programs. High-level

synthesis tools take their output and map it into low-level, synthesizable RTL. It is then up

to FPGA synthesis tools to issue a programmable FPGA bistream from this RTL.

3.5.1 Extracting parallelism within the polyhedral model

A polyhedral representation contains all memory access information of the program, and

can capture dataflow information. This information can be used to detect possible parallelism

within a program.

Extracting dataflow information from a polyhedral representation is possible for instance

using Feautrier’s array dataflow analysis [27]. This information is carried in the form of
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affine relations:

B =
{

B : (x⃗ 7→ Ax⃗+ b⃗) ∈ Aff(DS1
, DS2

) : x⃗1 ∈ DS1
is consumed by x⃗2 ∈ DS2

⇔ x⃗1 = Ax⃗2 + b⃗
}

Otherwise said, an iteration called consumer is dependent on another one, the producer,

if and only if the consumer iteration is the image of the producer iteration by an affine

dependence relation.

Tiling can be applied to D so long as the dependences in B are not violated. Two kinds

of tiling are envisioned:

• Coarse-grain tiling, for node-level parallelism. The choice of tiling hyperplanes and tile

sizes are driven by the available resources on the node, for instance the cache size of

the CPU or the amount of Block RAM available on the FPGA.

• Fine-grain tiling, for data-level parallelism. The choice of tiling hyperplanes is driven by

the amount of usable parallelism as well as the local memory allocation and constraints:

one wants to maximize the utilized parallelism while avoiding port contention (on

FPGA/ASIC) or excessive register pressure (on ISAs).

Searching for a suitable tile size and shape is an optimization problem. There are domain-

specific solvers, such as PLuTo [8, 11, 12] that computes, via an optimization problem, tiling

hyperplanes that maximize the tile-level parallelism, and minimize the inter-tile dependences

(and therefore the inter-tile communication volume).

3.5.2 From a parallel polyhedral representation to a parallel ar-

chitecture

Once a parallel schedule is obtained from the polyhedral repsentation, we create an

architecture in two steps: polyhedral code generation, and optimizing high-level synthesis

tools.
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Manually optimizing an HLS design at the source level is a tedious process; domain-

specific source-to-source compilers [18, 50, 51, 82] automatically optimize existing HLS de-

signs, e.g. with respect to parallelism and locality. Some of these compilers such as PolyOp-

t/HLS [60] and POLSCA [89] are targeted at HLS engines, and use polyhedral optimization

techniques. These involve the same two steps as defined below

Polyhedral code generation

The polyhedral representation of the program contains information on which instances

of which statement must be executed (iteration space), and in which order (schedule). As-

suming the schedule is legal (i.e. the causality conditions are met and there are no memory

conflicts), it is possible to generate a program that describes the iteration space in the

selected schedule and correctly computes the desired result.

Code generators such as CLooG [3] are used to generate such codes in the form of loop

nests.

There are two technical challenges HLS polyhedral code generation. First, programs

are generated in an imperative, sequential language, making parallelism implicit whereas a

parallel architecture is desired. Second, multiple distinct regions of code need to be generated

when loop tiling is applied: while the accelerator itself executes the interior of a tile, the

schedule of the tiles is managed outside the accelerator and must be separately generated.

Parallelism is implicitly contained within the schedule, using the following idea: if two

points in the iteration space have the same schedule, then they may be executed in parallel.

Likewise, if an entire subspace of the iteration space has the same schedule, this entire

subspace is parallel.

Polyhedral code generators issue sequential code even for parallel regions of an iteration

space; a sequential loop that describes a parallel subspace is still such that all its iterations

can legally be executed in parallel. Two annotations are needed to pass the parallelism

down to the HLS engine: an unrolling directive, that will expose all iterations of the loop

(the code generator itself may unroll the loop if the HLS engine is not able to do so), and
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Figure 3.11: Macro-pipeline structure: read-execute-write. Our contribution focuses on the read
and write stages.

no-dependence directives to make it explicit to the HLS engine that the loop is indeed parallel

without requiring subsequent analysis from it.

Not all iterations that may be executed in parallel must be scheduled in parallel: one

can specify a cap on the number of parallel execution units to be generated. This number is

set using the unrolling factor.

Optimizing high-level synthesis

Loop tiling naturally yields a “read-execute-writeback” macro-pipeline structure as il-

lustrated in Figure 3.11: because tiles can be executed atomically, all I/O operations can

happen before and after execution. HLS tools such as Vitis HLS support such macro-pipelines

through manual code annotation, but through a restricted set of conditions of the pipeline

(i.e. absence of cyclic dependency between stages).

In this dissertation, we take advantage of the separation of stages to generate distinct

I/O functions that do not affect the execution stages. We only seek to optimize transfer

times and memory bandwidth usage. Existing tools [14, 60, 66, 71] can already optimize

the execute stage and take advantage of massive operation-level parallelism (thanks to loop

pipelining and unrolling).
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High-level synthesis engines do not use the polyhedral representation, and have a limited

dependence analysis ability. Hints provided at the polyhedral code generation time can

supersede its analysis and are important to enable parallelism.

3.5.3 From a polyhedral representation to a memory access pat-

tern

The core contributions of this Ph.D rely on automatic computation of memory layouts and

access patterns from the program’s polyhedral representation. Implementing these layouts

and access patterns involves generating data structures and access code from the polyhedral

representation. The generated code must match specific patterns to obtain burst accesses,

needed for a high bandwidth utilization.

Data spaces to access code

Data spaces in the polyhedral model are represented as multi-dimensional sets of integer

points. These sets have a natural lexicographic order, given by the coordinates of the points

they contain. Enumerating all points according to that lexicographic order gives a layout of

the data in memory.

That enumeration is performed by the same code generation tools as the iteration spaces,

such as CLooG [3]. I/O functions are generally generated from maps between two spaces,

the on-chip memory and off-chip memory spaces. Such code copies data between memories

where it may have different layouts. For instance, the following code stores a transposed

version of a matrix on chip:

1 for(int i = 0; i < 200; i++) {

2 for(int j = 0; j < 200; j++) {

3 local_array[i][j] = ext_array[j + OFFSET ][i + OFFSET ];

4 }

5 }
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Burst inference

HLS tools can infer burst memory accesses depending on the target interface. In the

case of a shared bus (e.g. AXI, PCIe), which is commonly found for off-chip accesses, a

burst access may occur if the bus supports it and the compiler recognizes access to a series

of consecutive addresses. In burst mode, no cycle is spent stalling for a new value after a

one-shot initialization latency, which yields full utilization of the available bandwidth.

Tools such as Vitis HLS 2022.2 exploit this using with either a call to a HLS-specific

memcpy routine, or through some form or pattern matching in the source code. To obtain

a burst access from a loop nest, generated by a polyhedral code generator, it is usually

sufficient that the code verifies the following:

• The loop bounds are statically known, constant integers,

• The loop counter is incremented by one,

• The memory accesses use the loop counter as an index variable.

Examples of codes from which a burst can be inferred are given in Section 3.3.2.
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Chapter 4

A Multi-level Contiguous Data Allocation for

Rectangular Tiles

4.1 Introduction

The performance of accelerators is driven by two main factors: parallelism and memory

accesses. To get the best performance, computations must not be slowed down by memory

accesses; this throughput constraint is even more prevalent on an FPGA accelerator, where

memory transfers and computations happen in parallel, and the slowest of memory and

computations determines the actual throughput. As seen in Chapter 2 and recalled in

Figure 4.1, both temporal locality and spatial locality, i.e. the amount of memory accesses

and the bandwidth utilization must be improved to get the best performance.

Temporal locality is achievable using loop tiling, as seen in Chapter 3. Tiling caters

to both locality (i.e. bounding the resources) and transfer parallelism: because tiles are

atomically executed, it is possible to schedule all transfers before and after the computations.

To be applicable, tiling often requires a pre-transformation of the iteration space (e.g.

skewing), that makes it legal to apply tiling. A skewing transformation changes the memory

access pattern, at the expense of spatial locality: even rectangular tiles may no longer

have rectangular footprints on the data arrays. However, to fully exploit high-bandwidth-

memories, one needs to transfer large contiguous chunks of memory. We therefore suggest

to create a memory allocation from the tiled version of the program, with the objective to

maximize the data access contiguity.

In this chapter, we create a data allocation from the tiled version of a program, after any

other legality transformations have been applied. We allocate data in a contiguous manner
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Figure 4.1: The method proposed in this work improves spatial locality, giving access to higher
performance due to fewer memory-induced stalls.

inside the data produced by each tile, but also across neighboring tiles, thereby maximizing

the utilization of the memory bandwidth.

The contributions of this chapter are:

• A memory layout and access pattern with two levels of contiguity for programs tiled

using rectangular tiles,

• A proof-of-concept compiler pass that automatically applies this memory layout,

• An evaluation of the performance of this layout, that shows it can fully utilize the

available bandwidth, while keeping the accelerator area about the same as other lay-

outs.

This chapter is organized as follows: Section 4.2 describes the context of this work and

existing ways to increase bandwidth utilization; then, Section 4.3 describes the construc-

tion of our burst-friendly off-chip layout. Finally, Section 4.5 provides an evaluation and

comparison with the state of the art.
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4.2 Related work

This work is primarily a compiler optimization technique for FPGA accelerators, and in

that sense, it belongs to, and is complemented by, a large variety of automated optimizations.

These optimizations target the computation schedule (e.g., to improve temporal locality),

the memory access pattern (e.g., cache conflict elimination, burst extraction with existing

allocations) the architecture (e.g. parallelism extraction, local memory partitioning). In this

section, we mention some optimizations that need to be applied along with the global memory

access optimization this work proposes, and also cover other domain-specific memory layout

techniques.

4.2.1 Improving temporal locality

The first optimizations to apply that targets memory utilization improve temporal local-

ity, and reduce the number of accesses.

Temporal locality increases the arithmetic intensity, by reducing the volume of data

transferred per arithmetic operation. One way to obtain this result is to re-use the data

already locally present on-chip or in a close level of the memory hierarchy. The following

methods increase the arithmetic intensity of a given program.

Modifying the program’s schedule to favor data reuse reduces the need for off-chip

transfers. Loop tiling [41, 79] is the main technique in this aim. The primary target of

tiling was to reduce the cache miss rate of CPUs, that have a cache hierarchy, but the

technique also applies to software-programmable accelerators such as GPUs [36], and thanks

to high-level synthesis tools, it also applies to application-specific hardware accelerators as

well [60].

Sharing on-chip resources to maximize their usage: On hardware accelerators,

fine-tuning of on-chip memory allocation may eliminate off-chip accesses. Memory cells may

be allocated multiple times, shared across tasks that do not interfere [77], increasing the

usefulness of each memory cell, thereby reducing the amount of off-chip traffic.
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4.2.2 Increasing the effective bandwidth

The root of the memory bandwidth issue is found in the massive parallelism the hardware

can provide. When it is fully used, the memory latency may be higher than the compute

latency, due to how the memory subsystem is designed and used. In this case, the design is

said to be memory-bound. Such a limitation may be caused, for instance, by port contention,

cache conflict misses, scalar accesses to global memory. All of these issues find their root

in a sub-optimal memory access pattern, a sub-optimal physical placement (layout) of the

data, or both.

Program and data transformations of several kinds can be used to adapt the access

pattern to the data layout, or adapt the data layout itself to the program; proper use of the

memory and its access interfaces result in an increase of the memory bandwidth to a value

closer to the nominal memory chip bandwidth. Further increase of the effective bandwidth,

which is the amount of useful data transferred per unit of time, may be achieved using data

compression techniques.

Our work is positioned among these techniques, but it is also essential that temporal

locality and on-chip performance optimizations are applied to exhibit sufficient parallelism

and create the demand for bandwidth.

Optimizing memory access pattern and layout

Sub-optimal usage of memory bandwidth causes a drop down in effective bandwidth. It

may be due to where the data is located in memory and the schedule of access requests. The

following methods can increase the effective bandwidth by playing with the data layout, the

access pattern, or both.

Eliminating access conflicts Access conflicts may occur in all memory architecture,

when one wants to use a physical port or memory cell to convey multiple data at the same

time. Mapping the data to other cells or addresses will resolve the conflicts. On FPGA

chips, parallel memory access patterns may incur port contention. Such a phenomenon is
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common with on-chip memories, but may happen on multiple-port memory architectures

such as high-bandwidth memory (HBM). Bank partitioning [17] is a key and widely used

technique to bank conflict prevention, and is available in commercial high-level synthesis

tools. Conflicts also happen in set-associative caches when multiple addresses share the

same set and therefore the same physical memory cells in the cache. Appropriate array

padding [37] reduces such conflict misses at the price of an increase in off-chip array size.

Exhibiting burst accesses by re-scheduling memory accesses It may be possible

to exhibit burst accesses by changing the access order of a given set of data addresses. If

communications and computations are not separate [5], then the execution’s schedule is also

the memory access schedule; a loop transformation that maximizes DRAM row and burst use

is found. Such a process changing the loop’s execution order, it may break temporal locality.

When communications and computations are executed separately and on-chip memories are

used as scratchpads [60], the global memory access pattern does not need to match the on-

chip access pattern. In this case, it is possible to improve memory bandwidth usage while

keeping the same on-chip performance.

Re-allocating data in a burst-friendly layout Regardless of the data layout, it is

always possible to make burst accesses to memory, however, the proportion of useful data

accessed by such bursts may be low. It is possible to change the data layout to exhibit a

high-usefulness burst access pattern. Data tiling [45] is one such technique; in the specific

case of dense matrix product (GEMM), block matrix layout or data tiling as illustrated in

Figure 4.2 (c) is known to have excellent spatial locality [35]. The dependence pattern of

GEMM is such that the footprint of a tile can exactly fit a data tile, making it ideal layout

for such an application. There is a trade-off between size and shape of data tiles and the

usefulness of the burst accesses they permit, explored in works such as [58].
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Column Major Row Major Data Tiling +
Row Major

Data Tiling +
Column Major

Figure 4.2: Memory layouts (non-tiled and tiled) for a 2-dimensional data space, and access
patterns for a tile. Each dot is the start of a burst access, that spans until the arrow tip. Data
tiling layouts enable a single burst access per tile instead of one per row/column.

Increasing effective bandwidth by compressing data

Another class of solutions around the bandwidth issue is using compression, whether lossy

or lossless. Ozturk et al. [58] created a dynamic lossless compression engine that acts like a

cache, where local data is compressed before being sent out to memory, and decompressed

when coming from memory. Compression combines two advantages: it saves both memory

and bandwidth, at the cost of using extra cores or on-chip area to perform it. A major pitfall

of compression combined with data tiling is that it requires to read or write a full tile even

to access a single point from it.

Lossy compression enhances throughput as well, at the price of errors. Maier et al.’s per-

foration [54] is a form of lossy compression, as is the well-known JPEG algorithm. Nakahara

et al. [57] use it on CNN inputs; their method is to compress the CNN input on the host

using the lossy JPEG algorithm, decompress it on FPGA chip, and perform the inference

there. As expected, accuracy goes down as the JPEG quality factor decreases, and there is

a trade-off with the obtained speedup.

Sun et al. [72], tackle the same bandwidth problem as ours by using a mix of compression

and data layout. Although this approach does not rely on polyhedral dependency analysis,

it features the same base idea: group together data that is being used together.
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4.2.3 Automatic synthesis of optimized hardware

This work is an automated memory layout optimization for FPGA accelerators, that

needs to be accompanied by more FPGA-specific optimizations. There is a longtime sus-

tained community interest in automating optimization of hardware design, including high-

level polyhedral optimizations (as opposed to low-level RTL tuning). This has resulted in

compilers targeting FPGAs being developed, and we give some of them below.

Early work on polyhedral compilation was already targeting hardware design; Le Verge,

Mauras and Quinton in 1991 [76] were using the Alpha language to automatically derive a

systolic VHDL circuit from an Alpha polyhedral specification.

More recent work on HLS tools made it possible to explore tiling options for FPGA or

ASIC accelerators (Pouchet et al., 2013 [60]) on various performance metrics such as latency,

area, power consumption, memory bandwidth. Polyhedral transformations are done using

specific tools, such as Pluto (Bondhugula et al., 2008 [10]) that automatically identifies tilable

loop nests and applies tiling.

The most recent advances in tools bear a focus on data movement and memory issues. The

SODA framework [13] automatically generates a dataflow-like pipeline structure with FIFO-

ordered off-chip accesses; the data is automatically transformed have a specific allocation

for this to work. This approach turns the data layout into a specific predetermined layout,

independent of the actual dependence pattern, whereas ours finds a data layout and an access

pattern for each accelerator in function of the dependence pattern.

Xiang et al., 2022 [81] propose an approach that is complementary to ours, with an HLS

code generator that infers the entire data movement and memory allocation, both off-chip

and on-chip. This approach does not rely on fine-grain dependency analysis, and therefore

has to keep the inner layout of each array; however, the location of each array in memory is

carefully chosen so as to minimize the latency and maximize the bandwidth. Our approach

is complementary: we make use of fine-grain dependency analysis to transform the inside of

the arrays.
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4.3 Canonical Facet Allocation

One of the two main contributions of this chapter is a memory allocation technique based

on the polyhedral representation of the program. It is based on the observation of Deest et

al. [24, 25], that when rectangular tiling is applied, the flow-in and flow-out data is contained

in the faces of each tile. Provided the intermediate results of a tile stay on-chip throughout

the entire execution of a tile, it is therefore only necessary to clearly identify these faces and

provide a memory allocation for their data, that can then be made contiguous.

Our idea is to create such a contiguous memory allocation and add extra contiguity

opportunities, by having faces from neighboring tiles adjacent in memory. This enables

contiguous accesses across faces, hence further contiguity.

In this section, we explain how the data layout and corresponding access functions are

built. Section 4.4 explains the compiler flow and code generation phases to implement the

allocation described here into an accelerator.

4.3.1 Description of the method

To create a Canonical Facet Allocation (CFA), we start from a program tiled with rect-

angular tiles. We first need to determine which data to take, and this must include all of the

flow-in data. Using the observation that this data is contained into faces of tiles adjacent to

the one being executed, we create multiple data spaces, one per face, and create projections

that map iteration results to the newly created spaces.

Once the data spaces are created, their layout has to be determined. For CFA, the chosen

layout is contiguity at multiple levels: the data produced by a tile must be written to bulk,

contiguous spaces to preserve its contiguity (intra-tile contiguity), and it must be possible

to make contiguous accesses spanning several regions (inter-tile contiguity).

To meet these two levels of contiguity, two techniques are applied:

• data tiling,

• array dimension permutation.
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(c) Iteration-wise flow-out set (facets)

Figure 4.3: An instance of flow-in and flow-out sets. The flow-out set is the union of thicker
versions of the tile faces (facets), while the flow-in set is composed of an union of either whole or
partial facets. Some flow-in sets are adjacent in the iteration space; CFA reflects this adjacency in
memory.

The next subsections give a more formal view of how the projections (Sec. 4.3.4), the data

tiling scheme (Sec. 4.3.5) are created, and how to pick the array dimensions to be swapped

to enable multi-level contiguity (Sec. 4.3.6).

4.3.2 Hypotheses

In this chapter, we make the following assumptions on the programs to be transformed.

Uniform dependences: It is, in general, impossible to guarantee that the flow-in and

flow-out of each tile are bounded. It is however sufficient that all the dependences are uniform

(i.e. they are translations) to have this guarantee. We will therefore make this hypothesis,

and can write the dependences as a set of vectors:

B =
{

b⃗i : i = 1, . . . , Q
}

Also, this hypothesis does not imply that all memory accesses are uniform - this only

applies to accesses to read-write arrays (those that hold intermediate results).

Rectangular tiling: We assume tiles are rectangular in all dimensions; using polyhedral

tools, it is notably possible to change the iteration space basis so that rectangular tiling
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becomes legal. Therefore, before applying CFA, we expect such a pre-processing to have

been done if necessary.

Non-sparse data: It does not make sense to apply CFA on highly sparse data. The

data layout of CFA is dense per construction, so that uniform dependencies yield uniform

memory accesses. Using it with sparse data would lead to a significant amount of avoidable

redundant data transfers. Sparse data should use a sparse representation instead.

4.3.3 Definitions

We use the following terminology in the next subsections:

Projection: We use a restricted definition of projection, considering only orthogonal

projections. They are used to strip one dimension from a multi-dimensional space. For

instance, the projection pk such that

pk(i0, i1, . . . , ik, . . . , id) = (i0, i1, . . . , ik−1, ik+1, . . . , id)

removes the k-th dimension from an d-dimensional space.

Tile: A tile is an hyperrectangle, subset of the iteration space. Its size is s1 × . . . sd

in general; in the 3-dimensional example of Figure 4.3, tile size is respectively s1, s2, s3

where s1 corresponds to tile size on the i axis, s2 for the j axis and s3 for the k axis. A

tile has coordinates i1, . . . , id along each axis; in the example, these are i1, i2 and i3 along

respectively the i, j and k axes.

Facet: A facet is an hyperrectangular set of iterations that is contained in the flow-out

set of a tile, and that contains at least one face of the tile.

First-level neighbor: A first-level neighbor of a tile is a neighbor that is reached with

a move along a single canonical axis. For instance, t⃗1 = (i1, i2+1, i3) is a first-level neighbor

of t⃗ = (i1, i2, i3), but t⃗2 = (i1 + 1, i2 + 1, i3) is not.

Second-level neighbor: A second-level neighbor of a tile is a neighbor such that is

reached with a move along exactly two distinct canonical axes. For instance,
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t⃗1 = (i1−1, i2+1, i3) is a second-level neighbor of t⃗ = (i1, i2, i3), but t⃗2 = (i1+1, i2+1, i3+1)

and t⃗3 = (i1 + 1, i2, i3) are not.

k-th level neighbor: By extension of the above two definitions, a k-th level neighbor

of a tile is a neighboring tile that is reached with a move along exactly k canonical axes.

In this chapter, we assume all dimensions have been tiled. We will use the following

notations, as per Table 3.1:

• E ⊂ vect (e⃗1, . . . , e⃗d) : d-dimensional iteration space

• b⃗1, . . . , b⃗p : dependence vectors, such that rectangular tiling is legal (see Section 3.4.3).

We assume all dependence vectors are backwards in all dimensions: ∀i, j : b⃗i · e⃗j ⩽ 0.

• N1 × · · · ×Nd : iteration space size

• t1, . . . , td ∈ N∗ : tile sizes (note t = d because all dimensions are tiled)

4.3.4 Multi-projection: contiguity along multiple directions

The first aspect of Canonical Facet Allocation is to determine which data should be part

of facets transmitted across tiles. We show that making multiple projections of an iteration

tile gives all the flow-out data. Moreover, each projection goes to a different data space, each

having its own layout and access pattern. Each layout will then be tailored for contiguity.

This section explains the multiple projections and their rationale.

Rationale

In a tile, not every iteration produces a result that is needed in other tiles. Therefore,

only the result of select iterations, called the flow-out set of a tile, goes to memory. Visu-

ally, in Figure 4.3c, the flow-out set is made out of three “slabs” (facets), each of which is

consumed by different tiles (see Figure 4.3b). Each of the “slabs” is consumed by the tile

it is immediately adjacent to, and partially by other tiles. Therefore, each slab should be a

contiguous piece of memory.
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Figure 4.4: Multi-projection: each facet (see Figure 4.3c) is projected (mapped) to a data space.
Choice of contiguity comes later on.

We map iterations to memory using a projection from the iteration space to an array with

fewer dimensions. To get the best spatial locality, this array should mirror the neighborhood

relations in the iteration space: the values produced by two neighboring iterations in any

direction should also be neighbors in memory. Given that memory is a one-dimensional

space, only one such neighboring direction in the iterations can be mapped to memory. This

is not sufficient to map each “slab” to a contiguous piece of memory.

Multi-projection, illustrated in Figure 4.4 separates the “slabs” by cutting the flow-out

set into three (partially overlapping) pieces. Each piece of the cut is mapped to a distinct

array (data space). In Figure 4.4, there is a data space for each of the canonical hyperplanes

(i, j), (i, k) and (j, k), to which iterations are mapped with resp. projections pk, pj, pi.

There are as many directions of contiguity as projections. Having more directions of

contiguity decreases the number of read transactions, at the expense of a higher storage

redundancy, and a higher writeback time.

Intuitively, with uniform dependences, the flow-in set of each tile is parallel to the tile’s

faces. It therefore makes sense to have one projection per face of the tile.

The next two paragraphs state how each projected data space is created, first with an

example, then in the general case.
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Construction example

We start with a visual way to construct the data spaces, from a 3-dimensional iteration

space, using Figure 4.3. The idea to construct the projected data space is:

1. To determine how thick every facet is, and

2. To create a function that maps iteration coordinates to data array coordinates.

In Figure 4.3c, the part of the flow-out parallel to hyperplane (i, j), in light blue, has

a thickness of 2: consumer tiles will need the result of the two uppermost (i, j) planes

(k ∈ {3, 4}). The dual way to see it is the flow-in (Figure 4.3b): when moving the dependence

pattern along the bottom plane of a consumer tile, the iterations this plane depends on (part

of which the blue slab below the consumer tile) are located two planes below it.

The idea is to make data spaces that are as thick as the dependence pattern ”plunges” into

the neighboring tiles. For each projection, it is the maximum length of every dependence

vector along the normal vector to the hyperplane we are projecting on. In the example

of Figure 4.3, the dependence pattern is in Figure 4.3a. The thickness of data space for

hyperplane (j, k) is the maximum absolute value of the component along the i axis of every

dependence vector. We determine it to be 1: only the rightmost (j, k) plane of iterations is

needed, and is mapped to a two-dimensional array (Dtype facet i[Nj][Nk]). We name it

facet because it will ultimately contain data tiles holding entire facets.

The mapping from iteration coordinates to array coordinates for this example (see Fig-

ure 4.4) is the following:

Pi(i, j, k) = (j, k)

and its domain is the rightmost face of each tile:

D(Pi) = {(i, j, k) : i ≡ 4 mod 5}
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Note that, although we do not do it at this point, the above projection function can be

translated to code. Generating code of this function in its domain would result in a for loop

as in Algorithm 1 that browses the rightmost face of each tile (in this example, tile size is 5

in each dimension).

Algorithm 1: Loop nest describing a facet

for j = 5i2 to 5i2 + 4 do
for k = 5i3 to 5i3 + 4 do

facet i[j][k] = iteration result(4, j, k)
end

end

For hyperplane (i, j), the maximum absolute value of the component along the k axis of

every dependence vector is 2. Therefore, the data space to be created will consist of the two

uppermost (i, j) planes of every tile.

The mapping here is a modulo projection: instead of getting rid of the component along

the k axis, this projection replaces the k axis by k mod 2:

Pk(i, j, k) = (i, j, k mod 2)

Its domain is the two uppermost planes:

D(Pk) = {(i, j, k) : 3 ⩽ k mod 5 ⩽ 4}

General case

Consider, according to Table 3.1, a d-dimensional iteration space D, which is contained

in a vector space having an orthonormal basis (e⃗1, . . . , e⃗d). Consider Q uniform dependence
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vectors b⃗1, . . . , b⃗Q, such that rectangular tiling is legal on all dimensions1. Let s1, . . . , sd be

the tile sizes.

We notably make the hypothesis that all dependences are shorter than the tile sizes

across all dimensions, i.e |bj| < sj for all j ∈ {1, . . . , d}. We also assume that all dependence

vectors are backwards in all dimensions: ∀i, j : b⃗i · e⃗j ⩽ 0, without loss of generality (up to

a change of basis).

Let k ∈ {1, . . . , d}, e⃗k the canonical vector of the k-th dimension. The k-th face is given

by those iterations which k-th coordinate is equal to tk − 1.

In the general case, i.e. for d-dimensional spaces, we determine the thickness of each

facet the same way as above: it is the longest dependence vector along the direction normal

to that face. Assuming dependence vectors b⃗1, . . . , b⃗p, the thickness of facet normal to e⃗k is

given by:

wk = max
q∈{1,...,p}

∣
∣
∣e⃗k · b⃗q

∣
∣
∣

A tile of iterations, per Table 3.1, is

T (⃗t = i1, . . . , id) = {x⃗ = (x1, . . . , xd) : ∀q ∈ {1, . . . , d} : iqsq ⩽ xq < (1 + iq)sq}

The k-th facet for tile t⃗ is the set of iterations given by:

Fk (⃗t) =
{
x⃗ = (x1, . . . , xd) ∈ T (⃗t) : (1 + ik)sk − wk ⩽ xk < (1 + ik)sk

}

1Rectangular tiling is a special case of tiling, where the tiling hyperplanes are such that their normal vectors
are the basis vectors of the space.
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To map the facet’s iterations to the data spaces, it is then sufficient to take canonical

modulo projections:

Pk(x1, . . . , xd) = (x1, . . . , xk−1, xk mod wk, xk+1, . . . , xd)

We claim that all of the intermediate results needed to execute a tile are contained within

facets. To prove this, we need to prove that all the flow-in data for any given tile is contained

within facets, and likewise, facets contain all of its flow-out data. By definition, flow-out

data for a tile is flow-in data for another tile; therefore, proving the completeness of the

flow-in side also proves the flow-out side.

Proposition 1. For any given tile of coordinates t⃗, the flow-in iterations of T (⃗t) are con-

tained inside facets.

Proof. The iteration-wise flow-in set of a tile is defined as those iterations which result is

used by this tile but are executed in another tile. It can be written as:

φi(T (⃗t)) =
{

y⃗ ∈ D \ T (⃗t) : ∃j ∈ {1, . . . , Q} : y⃗ − b⃗j ∈ T (⃗t)
}

Let y⃗ ∈ φi(T (⃗t)). We will show that y⃗ belongs to at least one facet of the tile it is

contained in.

Let j ∈ {1, . . . , Q} such that y⃗ − b⃗j ∈ T (⃗t). We know that for all k ∈ {1, . . . , t},
∣
∣
∣⃗bj · e⃗k

∣
∣
∣ ⩽ wk by definition.

Let b⃗j = (bj,1, . . . , bj,d), and likewise y⃗ = (y1, . . . , yd). Given that y⃗ − b⃗j ∈ T (⃗t), we know

that for every q ∈ {1, . . . , d}:

iqsq ⩽ yq − bj,q < (1 + iq)sq

which means:

iqsq + bj,q ⩽ yq < (1 + iq)sq + bj,q
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and because bj,q ⩽ 0,

iqsq − |bj,q| ⩽ yq < (1 + iq)sq − |bj,q|

It is impossible that for all q ∈ {1, . . . , t}, iqsq ⩽ yq, otherwise y⃗ ∈ T (⃗t). Therefore, let

q0 be such that iqsq − |bj,q0 | ⩽ yq0 < iq0sq0 .

Given that dependences are shorter than tile sizes along all dimensions, we know that y⃗

is in an immediately neighboring tile of T (⃗t); let t⃗′ be the coordinates of that tile. We know

that the q0-th coordinate of t⃗′ is iq0 − 1. Therefore:

((iq0 − 1) + 1)sq − |bj,q0 | ⩽ yq0 < ((iq0 − 1) + 1)sq0

which means that y⃗ ∈ Fq0(t⃗
′), i.e. y⃗ is contained within a facet from tile t⃗′.

4.3.5 Flow-in from first-level neighbors: Full-tile contiguity

We have determined that facets contain all the intermediate results necessary to execute

tiles. Facets with results are transferred to memory once a tile’s execution is complete. To

this effect, we must give an allocation to the data contained within each facet.

We want that for each tile, every facet (as in Figure 4.5) is mapped to a contiguous region

of memory, to be written with a single burst access. We call this full-tile contiguity, and use

data tiling to obtain it. The idea is to mirror the iteration space tiles on the data space so

that each data tile corresponds to a facet.

This transformation improves both write and read performance: Flow-out facets are

almost entirely used by the tile they are immediately adjacent to (as in Figure 4.5).

We give below an example and the general way to apply data tiling in the projected data

spaces.

Example

We can continue with the example of Figure 4.3. In this example, using Ni, Nj and Nk

as the iteration space size along each axis, we have built data spaces for each facet:

62



i

j

k

Figure 4.5: First-level neighbor facets that are consumed by the grey tile.

• facet i[Ni/5][Nj][Nk]

• facet j[Nj/5][Ni][Nk][2]

• facet k[Nk/5][Ni][Nj][2]

Hyperplane (j, k) is written to facet i using the projection pi (plane on the right of

Figure 4.4). We seek to further divide facet i to make the footprint of each tile a contiguous

block of memory.

The array facet i will therefore be split into tiles of size 5× 5, resulting in the following

array:

facet i[Ni/5][Nj/5][Nk/5][5][5]

General case

To mirror iteration tiles on the data space, we apply data tiling with the same tile

sizes as the iteration space: the projection normal to e⃗k is therefore tiled with dimensions

(t1, . . . , tk−1, tk+1, . . . , td).
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To tile the i-th dimension of an array with size t, we replace the i-th dimension by two

dimensions: the quotient and remainder of the Euclidean division of the original dimension by

t. This operation gives 2(d−1)-dimensional data spaces from a (d−1)-dimensional projection

of the iteration space. All the quotient dimensions are moved first, and the remainder

dimensions are moved last. We call the quotient dimensions the outer dimensions, and

the remainder dimensions the inner dimensions.

The following mapping tiles a 3-dimensional data space A with tile sizes (s1, s2, s3):

A[i][j][k] 7→ A′[i/s1][j/s2][k/s3][i%ti][j%tj][k%tk]

This transformation is composed with the projection function of the previous section to

give the actual allocation.

Data tiling only guarantees the entire facet is read or written as a single burst access. In

the flow-in data from second- or third-level neighbors, as in Figure 4.6, we need to read only

a subset of some facets.

To enable cross-tile contiguity in multiple directions, we want adjacent facets from ad-

jacent tiles in the iteration space to also be adjacent in memory. Section 4.3.6 changes the

layout of the arrays obtained via data tiling to enable this adjacency.

Choice and cost of memory allocation

It is possible to allocate the same memory cells to facets from distinct tiles, at the

condition that the facets do not need to be live simultaneously, i.e. that facet data being

overwritten will no longer be needed.

Allocations considering these write-after-read dependences, such as lattice-based projec-

tion [22], can be used to obtain a legal allocation with a small memory footprint. However,

these do not guarantee the possibility of inter-tile contiguity, because they do not necessarily

preserve the adjacency of two tiles in the iteration space in the memory allocation of their

facets.
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In this work, we prioritize contiguity over memory footprint size. To guarantee the

existence of inter-tile contiguity, we choose to allocate a distinct cell for each facet for each

tile, resulting in a single-assignment allocation. Although this choice is not optimal, any

reduction in memory size performed must keep

The memory cost of this choice is proportional to the size of the iteration space: the

total amount of memory needed, considering tile sizes si and iteration space sizes Ni on

each dimension (i = 1, . . . , t), is the volume of each facet (that can be seen in Figure 4.5)

multiplied by the number of tiles in the iteration space:

S =
t∑

i=1

[wi

t∏

j=1
j ̸=i

si

︸ ︷︷ ︸

volume of
facet i

t∏

j=1

⌈
Ni

si

⌉

︸ ︷︷ ︸

number of tiles in
each dimension

]

4.3.6 Flow-in from second-level neighbors: Inter-tile contiguity

In the general case, part of the flow-in iterations of a tile are located in its second-level

neighbors, such as those as shown in Figure 4.6.

Intuitively, second-level neighbors are neighbors of first-level neighbors. We therefore

seek to have contiguous accesses crossing data tile boundaries, or inter-tile contiguity : we

extend burst accesses reading from a data tile from a first-level neighbor to span into a

second-level neighbor.

This can be obtained by swapping the dimensions of the data arrays. The next paragraphs

explain how.

Example

We take back the example of Figure 4.3, of which the part of the flow-in data in second-

level neighbors is shown in Figure 4.6. The producer iterations are part of two facets at the

same time. We therefore have to:

1. Choose a direction of contiguity for each facet, and
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Figure 4.6: Flow-in iterations from second-level neighbors of an iteration tile. CFA places in
memory each data tile containing a slab next to a fully consumed data tile to read both in the same
burst.
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Figure 4.7: The four possible data layouts for a 2-dimensional array in tiled data layout (inter-tile
+ intra-tile layouts), and the number of bursts needed to read a tile and part of the tile below it.
Only one layout allows a single burst spanning both tiles.
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2. Select the right facet to read each extension from.

If we call Φi(i1, i2 − 1, i3 − 1) the set coming from tile (i1, i2 − 1, i3 − 1) (purple slab in

Figure 4.6), we notice that this slab is a subset of both the (i, j) and (i, k) hyperplanes, so

we can read it from both facet j and facet k arrays.

We choose the direction of contiguity for the data space projected from the (i, k) hyper-

plane to be the k axis, and to read the extension Φi(i1, i2−1, i3−1) from facet j. Figure 4.7

shows the four possible layouts for the facet j: only column-major as a data tile layout

and row-major as an intra-tile layout will allow reading Φi(i1, i2 − 1, i3 − 1) as a contiguous

extension of facet j from tile (i1, i2 − 1, i3). We swap the dimensions of the facet j array

to match it. Column-major inter-tile layout means that dimensions are ordered this way:

i3, i1; and row-major intra-tile layout gives the i, k order.

Accessing the facet j array is therefore done with facet j[i2][i1][i3][k][i][2].

The result is that the purple and red slabs of Figure 4.3b can be read in a single, merged

burst, from facet j: they are contiguous along the k axis. The same process can be repeated

with the other facets.

General case

A tiled data space, as in Figure 4.7, has two dimensions corresponding to each canonical

axis (one for tile coordinates, and one for intra-tile coordinates). The direction of inter-tile

contiguity for a facet has to be chosen among those axes that are projected.

For a given projection, to make tiles along the i axis contiguous, then the i1 dimension

(outer dimension on the i axis) is moved as the last of the outer dimensions to be enumerated.

Cross-tile contiguous reads require the i dimension to be the first of the inner dimensions to

be enumerated.

Once the direction of inter-tile contiguity is picked, those parts of the flow-in sets that

have been made contiguous can be merged to be read in a single burst.
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Figure 4.8: Flow-in from third-level neighbor (pattern of Figure 4.3. CFA places these four points
contiguously in memory within a data tile (intra-tile contiguity).

4.3.7 Contiguity of flow-in from third-level neighbors

The subsets of flow-in coming from third-level neighbors, as is the set in Figure 4.8, are

in general not contiguous in memory to data already accessed from first- or second-level

neighbors. Still, this set may be read in a single burst access.

In the specific case of a 3-dimensional iteration space, there is only one flow-in set from

a single third-level neighbor. It has a constant number of points, only a function of the

dependence pattern. We call S3 this subset.

For instance, in Figure 4.8, S3 is the subset of iterations coming from tile (i1 − 1, i2 −

1, i3 − 1) with i = 4, j ∈ {3, 4} and k ∈ {3, 4}. This subset needs to be contiguous within

one of the three projected facets.

It is possible to make S3’s data contiguous in memory by changing the order of the inner

dimensions of facet k (projection of (i, j) planes). Since this facet only contains iterations

with k ∈ {3, 4}, we make S3 contiguous using the order of dimensions i3, i2, i1, i, j, k. Then,

the subset of Figure 4.8 is contiguous within facet k: for any i, the points (i, 3, 3), (i, 3, 4),

(i, 4, 3) and (i, 4, 4) are consecutive in memory. We can thus fetch them in a single burst.

68



The final layout of our arrays is therefore:

• facet i[i1][i3][i2][j][k]

• facet j[i2][i1][i3][k][i][j % 2]

• facet k[i3][i2][i1][i][j][k % 2]

4.3.8 Case of k-th level neighbors

Although full, inter and intra-tile contiguity are always possible for first, second and

third-level neighbors in a 3-dimensional space, it may not be in a 4 or higher-dimensional

iteration space: the number of k-th level neighbors of a tile is Cd
k , which is higher than d,

the maximum number of projections (i.e. of directions of contiguity).

4.4 Implementation

The previous section has introduced how the memory layout we suggest is computed from

the polyhedral representation of a program. To use it in an accelerator, we need to generate

access code that honors this layout.

This section explains a proof-of-concept source-to-source compiler pass, targeting HLS

engines, that applies our layout to inputs and outputs of an FPGA accelerator. This pass

performs two main steps: analyzing dependencies and calculating facets, and then, trans-

forming the program to use them. The code resulting code is mapped to an FPGA accelerator

using a synthesis tool such as Vitis HLS or Catapult. These steps are explained in the next

subsections.

4.4.1 Overview: compiler pass

The flow of our compiler pass is shown in Figure 4.9: it takes the polyhedral representation

of a program as input, under the hypotheses stated in the previous section. It determines

what the facets are, under the form of sets of points. It then generates loops to scan these
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Figure 4.9: Polyhedral compiler flow including the CFA pass (shown broken into two).

sets of points contiguously (copy-in / copy-out code), and wraps the tile’s code with this

copy-in and copy-out code. The copy-in/out code accesses global memory in CFA layout

and turns it into the original program’s layout for fast on-chip access.

The following subsections explain the transformations that are applied to the code and

how copy-in/out code is generated.

4.4.2 Determining the facets and their layout

The technique described in Section 4.3 is applied in order to determine the facets and

their layout: given the dependence pattern, the compiler generates the mappings between

iterations and data arrays (memory spaces).

4.4.3 Copy-in/out code generation

Once the layout of flow-in / flow-out data is determined by the mappings from the CFA

pass, we have to generate code that actually transfers this data using burst accesses. This

subsection describes how we proceed.

Selecting flow-in facets

We have proved earlier that the flow-in data of any given tile is contained within facets.

However, it is not necessary to read all facets produced by all neighboring tiles to get the
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flow-in data; only those facets adjacent to the tile to be executed need to be read. We need

to refine our reasoning and determine exactly which facets, or subsets of facets, are indeed

adjacent in that sense and need to be read.

The following proposition gives us, for each neighboring tile, the facets it produces that

contain flow-in data for the current tile.

Proposition 2. Let t⃗ = (i1, . . . , id) and t⃗′ = (i′1, . . . , i
′
d) be two neighboring tiles. The flow-in

data of T (⃗t) inside T (t⃗′) is contained into the following intersection of facets:

d⋂

k=1
ik ̸=i′

k

Fk(t⃗′)

Proof. Let t⃗ = (i1, . . . , id), and T (⃗t) be a tile of iterations, and t⃗′ = (i′1, . . . , i
′
d) be one of its

neighbors. Let y⃗ ∈ φi(⃗t) ∩ T (t⃗′) as defined in Section 4.3.3.

Let µ⃗ be the difference between tile coordinates:

µ⃗ = (i1, . . . , id)− (i′1, . . . , i
′
d)

. µ⃗ and y⃗ are constant throughout all the rest of this proof.

Let q ∈ {1, . . . , d} such that µq ̸= 0. We show that y⃗ ∈ Fq(t⃗′). For this, we need to show:

• First, that there is a dependence with a non-null q-th component, i.e. j such that

b⃗j · e⃗q ̸= 0

• Then, that there exists a dependence vector with a non-null q-th component such that

translating by its opposite leads outside the tile t⃗′.

For the second purpose, it is stronger to show that y⃗ − b⃗j ∈ T (⃗t), because it shows at the

same time that the q-th facet of T (t⃗′) contributes to the data flowing towards T (⃗t).

Per the reasoning used in Proposition 1, considering that the dependences are shorter

than tile sizes in all dimensions, we get that µq = −1.
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Existence of a dependence vector with a non-null q-th component: Assume that

∀j ∈ {1, . . . , p} , b⃗j · e⃗q = 0. Then, it is impossible that µq ̸= 0. Because µq = −1, we have

(iq − 1)sq ⩽ yq < iqsq

and therefore if for all j, b⃗j · e⃗q = 0, and yq + bj = yq (i.e. there is no way to move along

the q-th axis). The q-th coordinate of y⃗ makes it be outside T (⃗t). Therefore, it is impossible

that y⃗ + b⃗j ∈ T (⃗t) for any j.

Translation to T (⃗t): Assume that no dependence vector with a non-null q-th component

translates y⃗ into T (⃗t), i.e. for all j such that b⃗j · e⃗q ̸= 0, y⃗ − b⃗j /∈ T (⃗t).

We show this situation is absurd: since µq = −1, the q-th component of y⃗ causes it to be

outside T (⃗t).

• If there exists no dependence vector with a null q-th component, then it is impossible

that y⃗ ∈ φi(⃗t) by definition of the flow-in (there must be at least one dependence

vector leading to T (⃗t)), therefore there is a vector with a non-null q-th component

which opposite translates y⃗ into T (⃗t).

• If there exists a dependence vector with a null q-th component, then let k ∈ {1, . . . , Q}

such that b⃗k · e⃗q = 0 and y⃗ − b⃗k ∈ T (⃗t). Because µq = −1, we have

yq < iqsq

. The dependence vector b⃗k with a null q-th component will not cause

yq − bk,q ⩾ iqsq

and therefore y⃗ − b⃗k /∈ T (⃗t), which is absurd.

In all cases, we get that: if µq ̸= 0, then there exists a dependence vector b⃗k with a

non-null q-th component such that y⃗ − b⃗k ∈ T (⃗t), i.e. y⃗ ∈ Fq(t⃗′).
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Considering all the non-null µqs, we get that

y⃗ ∈
⋂

q∈{1,...,d}
µq ̸=0

Fq(t⃗′)

Given that ik ̸= i′k is equivalent to µk ̸= 0, the flow-in of tile T (⃗t) contained within T (t⃗′)

is contained within the intersection of all the k-th facets such that ik ̸= i′k:

d⋂

k=1
ik ̸=i′

k

Fk(t⃗′)

Making a contiguous flow-in/flow-out access pattern

We need to generate an access pattern that will take out the flow-in data from facets,

and conversely, write the flow-out data into facets. This access pattern is supposed to be as

contiguous as possible, and we expect the longest possible burst accesses.

Flow-out facets are entirely written with one transaction per facet - all the flow-out data

is contained.

The intersection of the actual flow-in set with each facet may not be exactly a rectan-

gle, and is perhaps not contiguous inside that facet. For this reason, a rectangular over-

approximation of the set of accessed data is taken, like in Figure 4.10. That superset may

span across facets from multiple iteration tiles - in this case, cross-tile contiguity ensures

that a single transaction can bring all the data on-chip.

Given that a bounding box of a subset is contained in the bounding box of the containing

set, doing so incurs less overhead than making a rectangular bounding box of the whole flow-

in data.

Correctness: For flow-out data, due to the choice of using a tile-wise single-assignment

allocation (no two different tiles write in the same memory cells), this over-approximation
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Bounding box

Flow-in set

Consumer tile (lower face)

Dependence pattern

Figure 4.10: Taking a rectangular over-approximation of the actual flow-in set incurs redundant
reads. Contiguous data (facets) are in red: an over-approximation may be necessary to preserve
access contiguity.

poses no correctness issues. For flow-in accesses, we must ensure this over-approximation

doesn’t break correctness (conflicts caused by two iterations sharing the same on-chip cell,

while one is not part of the flow-in data). Filtering out the unneeded data coming from the

bounding box is therefore necessary by adding a guard to the copy-in code.

Generating Burst-Capable Code

The code to be generated to fetch and write flow-in/flow-out sets has to trigger burst

accesses on its memory controller. We generate synthesizable high-level synthesis (HLS)

code, where bursts are inferred from for loops. The following conditions are sufficient for a

burst to be inferred:

• The number of addresses accessed is explicit (e.g., the trip count of the copy loop nest

is constant),

• If the target array size is known, the memory addresses are contained within its bounds,

• The addresses accessed are consecutive (e.g., with a pointer increment),

• The copy loop is pipelined with an initiation interval equal to 1.

Using the rectangular over-approximation of facet accesses, we can generate rectangular

loop nests, that are coalesced into a single loop to force the inference of a single burst instead

of a series of shorter bursts, as in Figure 4.11.
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1 copy:

2 float* offChipAddr = &facet_0[l][n][m][0] + 0;

3 for(int I = 0; I <= 9215; I = I + 1) {

4 #pragma HLS PIPELINE II=1

5 int c6 = I / 96 % 96;

6 int c7 = I % 96;

7 *offChipAddr = A_local [(96*n + c7 + 0) % 128][(96*m + c6) % 128][(96*l

+ 95) % 128];

8 offChipAddr = offChipAddr + 1;

9 }

Figure 4.11: Merger of two loops from which a burst access is inferred. On-chip addresses are
random, while off-chip addresses are consecutive.

The copy code features two address generators, for off-chip and on-chip data. Off-chip

address calculation is straightforward: when accesses are contiguous, one simply needs to

provide the HLS tool with a pointer that starts at the beginning of the memory region to

be accessed, and increment it. On-chip address calculation is performed at each cycle.

The resulting code for each facet is as in Figure 4.11, and is sufficient to get burst accesses

using a commercial HLS tool like Vitis HLS.

4.4.4 Generating HLS code

The final step in CFA code generation is to generate a three-step coarse-grain pipeline:

• The first step reads the flow-in data from global memory in CFA allocation, and turns

it into local allocation,

• The second step is tile execution,

• The last step is writeback from the accelerator to global memory.

This is implemented under the form of a function, as in Figure 4.12. Note the DATAFLOW

pragma, which is used by the HLS engine to generate a coarse-grain pipeline where the three

functions read, execute and write are executed in parallel, each function for a different

tile.
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1 void toplevel(int i, int j, int k, float* facetIJ ,

2 float* facetIK , float* facetJK) {

3 #pragma HLS INTERFACE m_axi port=facetIJ

4 #pragma HLS INTERFACE m_axi port=facetIK

5 #pragma HLS INTERFACE m_axi port=facetJK

6 #pragma HLS DATAFLOW

7 float buf1[TS*TS];

8 float buf2[TS*TS];

9 read(i, j, k, facetIJ , facetIK , facetJK , buf1);

10 execute(i, j, k, buf1 , buf2);

11 write(i, j, k, buf2 , facetIJ , facetIK , facetJK);

12 }

Figure 4.12: Top-level function, assuming tile size is TS, local memories are TS2 big and the
iteration space is TS3. Such sizes are typical of iterative stencils.

4.5 Evaluation

We evaluate the effects of adding CFA allocation to an FPGA accelerator with respect

to two metrics: bandwidth (relative to state-of-the-art allocations, and with respect to the

bus peak bandwidth), and FPGA resource overhead introduced by the address generation

code.

4.5.1 Experimental protocol

Experiments were carried out on a variety of uniform-dependence benchmarks listed in

Table 4.12. Iterative stencils update an array in place, and differ by their dependence pattern

and the dimensions of the iteration space.

The platform used is a Xilinx Zynq ZC706 board, including a xc7z045ffg900-2 FPGA. The

test accelerators only comprise read and write parts, the structure being that of Figure 4.13.

Every baseline has been tested by connecting it to a single AXI high-performance port

mapped to DRAM (port HP0); the frequency of every design is 100.00 MHz, the AXI bus

is 64-bit wide, and the data type transferred over the bus is 64-bit double-precision IEEE

floating point numbers.

2Results for jacobi2d9p-gol are omitted from this manuscript; full results are available at
https://arxiv.org/abs/2202.05933
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Figure 4.13: Memory-bound accelerator used for benchmarking: only the read and write engines
are implemented.

Table 4.1: Benchmarks used for testing CFA. Equivalent applications have the same computational
dependence pattern as the benchmark and would show similar performance.

Dependence pattern
Nb of
deps

Tile Sizes
Equivalent
Application

jacobi2d5p 5 163 → 1283 Laplace equation
jacobi2d9p 9 163 → 1283 3× 3 convolution

jacobi2d9p-gol 9 163 → 1283
2nd-order finite

difference

gaussian 25
4× 162 →
4× 1282

5× 5 Gaussian Blur

smith-waterman -3seq 7 163 → 1283
Alignment of 3

sequences
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Baselines

We considered the following baselines for comparison with CFA:

• Original Layout (as done by Bayliss et al. [5]): a best-effort burst access pattern

is determined under the original allocation. This access pattern does not issue any

redundant reads, possibly at the expense of contiguity.

• Bounding Box (as done by Pouchet et al. [60]): a rectangular bounding box around

the flow-in and flow-out data is taken so as to exhibit burst transfers; part of the

bounding box is unused and redundantly transferred.

• Data Tiling (as done by Ozturk et al. [58]): data tiling is applied to the original

arrays, and any tile that is accessed is entirely transferred. The reported value corre-

sponds to the best performing tile size that is less or equal to the iteration tile size.

The original layout baseline introduces no transfer redundancy but has the smallest

amount of and the shortest burst transfers. The two other baselines are trade-offs between

burst usefulness and bandwidth use: using a bounding box or data tiling result in using only

long burst accesses at the price of transfer redundancy. Each benchmark is tested against a

variety of tile sizes, with 1:1, 1.5:1 and 2:1 ratios.

4.5.2 Results and discussion

Raw bandwidth

The raw bandwidth shown in Figure 4.14 indicates that the CFA layout and access

pattern can reach close to 100% of the bus’ maximum bandwidth, whereas other baselines

exhibit high redundancy overhead (especially with the bounding box).

The high efficiency of our approach is mainly explained by three points:

• The small number of burst transfers per tile (4 in the case of 3-dimensional tiles). The

data tiling approach uses a single burst access per tile, and the original layout and

bounding box approaches issue multiple burst requests.
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Figure 4.14: Bandwidth for all baselines, per benchmark. CFA is efficient even for tiles where
one dimension is much smaller than the others. Bounding box is the technique used by Pouchet et
al. [60], Data Tiling is used by Ozturk et al. [58], and the original layout is the best-effort baseline
as in Bayliss et al. [5].
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• The length of these burst transfers: some accesses in CFA are entire facets,

• The ability of Vitis HLS to use burst access overlapping, which hides latency for long

bursts even when they are decomposed into smaller burst accesses.

Effective bandwidth

The effective bandwidth assesses the usefulness of the transferred data: it only counts the

data transferred that is actually useful for the application. Data transferred then ignored is

consuming bus time, thus lowering the effective bandwidth. Figure 4.14 shows the effective

bandwidth with colors, the difference with raw bandwidth being in gray. Two observations

can be made:

• For the considered tile sizes, CFA is able to bring the effective bandwidth close to 100%

of the bus bandwidth, which other allocations will not achieve.

• CFA is efficient even with small tile sizes. The gaussian benchmark, tiled with a small

size in time (4) and larger spatial sizes (up to 128×128), shows that CFA exceeds 80%

of the bus bandwidth for tile sizes above 4× 64× 64.

The high usefulness of CFA (low difference between effective and raw bandwidth) is due to

the choice of projections in CFA, which yields minimal redundancy.

Area cost

We analyze two distinct cost metrics specific to FPGA designs: the computational re-

sources (Slice and DSP), and the storage resources (Block RAM).

Computational resources The cost of CFA itself in terms of hardware is the

address generators. These are small, as about 95% of the logic area on our test

platform remains available for compute engines.

Regardless of the off-chip and on-chip allocations, the read and write engines take up

a small fraction of the available logic resources. Figure 4.15 aggregates the area occupied
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by all baselines other than CFA for all tile sizes we have tried, and positions CFA. It can

be observed that with tile sizes ranging from 163 to 1283, except gaussian which tile sizes

range from 4× 162 to 4× 1282, designs occupy between 2 and 5% of the total slice area, and

0 to 3% of the total available DSP resources on a XC7Z045 FPGA chip. Canonical Facet

Allocation does not show a significantly different slice occupancy than other baselines. CFA

requires DSP blocks to compute off-chip base addresses, but we observe that none of our

benchmarks exceeded 40 out of 900 (4%) of the DSP resources.

We observed the worst usage of DSP resources on non-power of two tile sizes; computing

the base address of a data tile takes a DSP block for a true integer multiplication. Addition-

ally, the experiments were carried out without any compute logic on the accelerators; given

the small size of the memory access modules, the synthesis tool did not have to significantly

optimize the design for area.

Block RAM usage Using CFA does not change the on-chip allocation, therefore

using CFA does not significantly increase the BRAM cost of a design.

In an FPGA design, Block RAM resources used for on-chip data storage are shared be-

tween multiple actors. Even when the compute actor is not implemented, the memories

needed to hold all the data on chip in and out of the memory actor must be present. There-

fore, all designs except gaussian occupy up to 95% of the available on-chip Block RAM, as

Figure 4.16 shows. BRAM was, indeed, the factor limiting tile size - the larger the tile, the

more data needs to fit into on-chip memories. The gaussian exception is due to one of its

tile sizes being constant and small.

We can observe in Figure 4.16 that the distributions of on-chip memories using CFA

and the original allocation are the same, with an exception (smith-waterman-3seq). This

is due to the fact that CFA does not change the on-chip allocation, which is defining the

amount of on-chip memory needed. The BRAM overhead for bounding box and data tiling

baselines is mainly due to two facts: for the bounding box baseline, writing a superset of the
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tile footprint implies that the values written while not modified have been read and held on

chip.

4.6 Conclusion

Our work provides an answer to the under-utilization of memory bandwidth observed in

many instances where an FPGA or ASIC accelerator is developed. The insufficient effective

memory bandwidth results in stalls, preventing the full exploitation of the on-chip paral-

lelism. Memory allocation can be the cause of a significant under-utilization of the available

bandwidth, due to the high latency of scalar accesses.

To overcome such under-utilization of bandwidth, we introduced the Canonical Facet

Allocation, a burst-friendly data layout in memory as well as a compiler pass that transforms

code to use it. It enables the use of the full bus bandwidth, for a low logic overhead.

To further increase the benefits of CFA, the machine model we have considered may be

extended to multi-port memory accesses, such as high-bandwidth memory, and distributed

memories. In such architectures, there are multiple data ports; to benefit from all their

bandwidth, one has to find an adequate repartition of data over each memory port to balance

accesses.
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Chapter 5

Maximal Atomic irRedundant Sets: a

Usage-based Dataflow Partitioning Algorithm

5.1 Introduction

Chapter 4 has introduced a memory allocation that can be applied to rectangular tiles

of a polyhedral program. Thanks to the simplicity of the rectangular shapes, it is possible

to obtain a high degree of contiguity, with a limited amount of redundant reads and writes.

With more complex tile shapes that are not eligible for the CFA technique, such as

diamond tiles [9], it is desirable to keep redundant accesses as low as possible while keeping

a good utilization of the bandwidth. In this chapter, we seek to have the highest utilization

of bandwidth under the constraint to have no redundancy.

The work in chapter relies on prior polyhedral analysis and locality optimizations seen in

Chapter 3 to have been done. Notably, we use the polyhedral reduced depdendence graph

(PRDG), and loop tiling background seen in Section 3.4.3. We assume tiling has been applied

to all the programs considered, and focus on inter-tile communications.

In this chapter, we derive sets of data that are communicated between tiles of a polyhedral

program, with a strict condition to not allow redundancy, both in terms of write (no data is

written more than once into memory) and read (no unused data is read from memory).

This chapter brings in the following contributions:

• A method to partition of the flow-in and flow-out of each tile into Maximal Atomic

irRedundant Sets (MARS),

• A calculator implementing this method, and an evaluation of its results on a selection

of polyhedral benchmark programs.
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It is organized as follows: Section 5.2 gives a view of other work related to data flow de-

composition; Section 5.3 describes the MARS sets and gives their construction procedure;

Section 5.4 provides examples of constructed sets and analyses them; Section 5.5 gives pos-

sible applications of our work.

5.2 Related Work

The flow-in and flow-out sets have been extensively studied along with a good amount

of breakup scenarios by Datharthri et al. (2013) [23] and Bondhugula (2013) [7]. We are

focusing on one special case along the lines of the work of Datharthri et al., with a constraint

that no point may belong to two communication sets at the same time.

A decomposition of the communicated sets of data may be used for inter-node message

passing in MPI to reduce the amount of traffic. Zhao et al. [90] perform a decomposition

of the data space of stencils into coarse blocks such that fetch and write operations of each

block are contiguous, and blocks are laid out according to the consuming neighbors so that

a series of blocks is retrieved in one contiguous message. A supporting graph data structure

provides the addresses for each of the blocks. This work seeks an optimal memory layout in

terms of number of communications, and does so without the flow-in and flow-out sets or a

polyhedral representation. Our work generalizes the idea using the polyhedral framework.

5.3 MARS: Maximal Atomic irRedundant Sets

This section presents the Maximal Atomic irRedundant Sets (MARS). It is laid out as

follows: first, we give a definition of MARS and properties that they match. Then, we

introduce an algorithm to construct these sets along with an example.

5.3.1 Notations and hypotheses

To compute the MARS, we need a program with a polyhedral representation, to which

the tiling transformation is legal along given hyperplanes. We restrict ourselves to the case
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where the dependences are uniform, and therefore we can consider individual dependence

vectors. The uniformity of the dependence pattern guarantees that, assuming an infinite

iteration space, all tiles of the same shape feature the same MARS. Tile sizes are assumed

to be constant, but they can be made runtime parameters using the idea from [64].

We also assume that each statement writes to a single memory location. Therefore, we

can interchangeably use an iteration and the value it produces (data).

Additionally, we will use the following notations, per Table 3.1:

• D designates the d-dimensional iteration space.

• There are t tiling hyperplanes, Hi for i ∈ {1, . . . , t}.

• There are Q dependence vectors, b⃗j for j ∈ {1, . . . , Q}. The Polyhedral Reduced

Dependence Graph (PRDG) is the set of all dependence vectors, noted B.

The following additional notations are added for this chapter:

• The non-trivial parts of a set E are all the non-empty subsets of E. It is noted Pn(E).

For instance:

Pn ({1, 2, 3}) = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

• The modulo operator is noted a mod b and congruences are noted a ≡ r[b].

5.3.2 Definition

Maximal Atomic irRedundant Sets (MARS) are defined as the maximal sets of iterations

that satisfy the following properties:

• Single-producer (SP): Each MARS is produced by a single tile.

• Atomicity (A): If any data from a MARS is consumed by a tile, then all points within

that MARS are also consumed by the same tile.
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(a) a (b) b

Figure 5.1: Sets of iterations for Smith-Waterman matching single-producer, atomicity properties,
but not maximality. Maximality forces the search for a non-trivial solution

• Maximality (M): If two iterations within the same tile have exactly the same consumer

tiles, the data they produce belong to the same MARS.

Figure 5.1 shows the need for the maximality property. A trivial decomposition of the

entire flow-out set into singletons would satisfy the (SP) and (A) properties, but is not what

is sought. The maximality property forces the search for a non-trivial solution.

5.3.3 Computation

The all-consumed property stated above is equivalent to saying that all data inside a

MARS is consumed by exactly the same tiles. Therefore, if two distinct tiles consume a

MARS M , then given the all-consumed property, both consumer tiles use all of the points

of M .

We propose a construction by breaking up the flow-out set of each tile. There is an

equivalent construction with the flow-in set of each tile, and both constructions lead to the

maximal sets that respect the three (SP), (A) and (M) properties.

Flow-out set

We start by refining the definition of the flow-out set seen in Figure 4.3, and provide a

different construction than [7]. The flow-out set of a tile is defined as all the iterations which

have at least one consumer iteration outside the tile. An example is given in Figure 5.2 for

a Smith-Waterman kernel with skewed tiles. Notably, we see that despite the dependences

being all unit or null along each axis, the “thickness” of the flow-out may be greater than

one (in this case, with the diagonal dependence).
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i

j

Figure 5.2: Flow-out set for a skewed tile of a Smith-Waterman kernel. The arrows correspond
to the dependence pattern (PRDG).

The tile-wise flow-out can be expressed as follows: given a tile T (⃗t),

φO(T (⃗t)) =
{

x⃗ ∈ T (⃗t) : x⃗+ b⃗1 ∈ D\T (⃗t) ∨ · · · ∨ x⃗+ b⃗D ∈ D\T (⃗t)
}

However, this formulation is missing information on the tile the dependence vectors lead

to. We therefore introduce a finer formulation with the individual contribution of each

dependence that traverses a tiling hyperplane, i.e. that crosses tile boundaries. This only

requires knowledge of the PRDG (dependence vectors) alongside the tiling hyperplanes and

the domain, and can be done as in Algorithm 2.

Following Algorithm 2, the flow-out of a tile is then the union of the contributions of all

dependences to it:

φO (⃗t) =
⋃

H∈H

⋃

b⃗∈B

FH,⃗b

MARS partitioning of the flow-out set

We explain how our partitioning scheme is done in this subsection.

Principle The flow-out set can be partitioned into MARS in such a way that, for any

given tile, all iterations it produces in a MARS have the exact same consumer tiles. The

partitioning idea is illustrated in Figure 5.3.
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Algorithm 2: Computing the the flow-out set using contributions from each de-
pendence

Input:

D = iteration space,

B =
{

b⃗i : i = 1, . . . , Q
}

= PRDG,

H = {Hi : i = 1, . . . , t} = tiling hyperplanes

{si : i = 1, . . . , t} = tile sizes

Result: φO (⃗t) = Flow-out set parametrized by tile t⃗
// T (⃗t) is a tile of coordinates t⃗

let T (⃗t) = {x⃗ ∈ D : ∀i ∈ [[1; t]] : tisi ⩽ x⃗ · n⃗i < (1 + ti)si};
for H ∈ H do

n⃗ = (ni)i=1,...,t normal vector to H;
s = tile size for hyperplane H;

for b⃗ ∈ B do

// Flow-out iterations for dependence b⃗ crossing hyperplane H

m = n⃗ · b⃗;

FH,⃗b(⃗t) =

T (⃗t) ∩
{

x⃗ = (xi)i=1,...,d ∈ D :
(

−m ⩽
∑d

i=1(nixi) mod s < 0
)

∧ x⃗+ b⃗ ∈ D
}

;

end

end

φO (⃗t) =
⋃

H∈H

⋃

b⃗∈B FH,⃗b;

return φO (⃗t)

Figure 5.3: Flow-out set of a tile intersected with each consumers tile’s flow-in set. The breakup
we propose, illustrated by scissors, splits iterations that have different consumer tiles.
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The partitioning is done by computing those subsets of the flow-out for which, given select

tiling hyperplanes, any dependence crosses all these tiling hyperplanes, and no dependence

crosses any other tiling hyperplane.

We browse all possible consumers by applying the above on all combinations of tiling

hyperplanes. As there are T tiling hyperplanes, there are 2T −1 possible consumer tiles, and

therefore at most 22
T−1 − 1 MARS.

Example We can construct the MARS for a Smith-Waterman kernel, which has the fol-

lowing characteristics:

• Domain: D =












i

j




 : (i, j) ∈ [0, 100]2







• PRDG: B =







b⃗1 =






1

0




 , b⃗2 =






0

1




 , b⃗3 =






1

1












(Q = 3)

• Tiling hyperplane families:

H = {{H1 : i ≡ 0[4]} , {H2 : j ≡ 0[4]}} (t = 2)

• Normal vectors:







n⃗1 =






1

0




 , n⃗2 =






0

1












• Tile sizes: {4, 4}

We can first notice that dependence b⃗1 does not cross hyperplane H2, and likewise de-

pendence b⃗2 does not cross hyperplane H1.

As a starting point, we consider those dependences that cross any hyperplane of the H1

family and none of H2.

To have a dependence cross hyperplane H1, the source iteration x⃗ =






i

j




 must be such

that, if b⃗ =






bi

bj




, then (i mod 4) + bi ⩾ 4 or (i mod 4) + bi < 0. Because all b⃗s only have

positive coordinates, we may just consider the case (i mod 4) + bi ⩾ 4.
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From dependence b⃗1, we get i mod 4 ⩾ 3; from dependence b⃗3, we also get i mod 4 ⩾ 3.

Therefore, the set of points such that any dependence crosses H1 is:







x⃗ =






i

j




 ∈ D : i mod 4 ⩾ 3







or equivalently 





x⃗ =






i

j




 ∈ D : i ≡ 3[4]







We compute the subset of these points for which H2 is crossed. The condition to cross

H2 is that, if






i

j




 = (x⃗ + b⃗), then j mod 4 + bj ⩾ 4, which means j mod 4 ⩾ 3 with both

dependences b⃗1 and b⃗2. We therefore get that the points from which H1 is crossed and not

H2 is: 





x⃗ =






i

j




 ∈ D : i ≡ 3[4] ∧ ¬(j ≡ 3[4])







We can do the same procedure to cross only H2, and both of H1 and H2, which yield the

following sets:







x⃗ =






i

j




 ∈ D : ¬(i ≡ 3[4]) ∧ (j ≡ 3[4])







and 





x⃗ =






i

j




 ∈ D : i ≡ 3[4] ∧ j ≡ 3[4]







Those sets are the MARS we were looking for, and correspond to those in Figure 5.4.

Algorithm Algorithm 3 gives the computation procedure to construct all MARS for all

tiles.
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Figure 5.4: MARS and their consumers for Smith-Waterman using square tiling.

In this algorithm, crossing a hyperplane is a shortcut for the property used in Algorithm 2.

Assume n⃗ = (n1, . . . , nd) is the normal vector to a hyperplane H, s is the tile size along that

hyperplane, b⃗ is a dependence vector, and x⃗ = (x1, . . . , xd) ∈ D. Let m = n⃗ · b⃗ assuming

m > 0. Then:

x⃗+ b⃗ crosses H ⇔ −m ⩽

d∑

i=1

(nixi) mod s < 0

From Algorithm 3, we obtain a decomposition of every tile’s flow-out set into MARS.

The MARS constructed via Algorithm 3 hold the properties (A), (SP) and (M):

• Single-producer (SP): MARS hold the (SP) property by virtue of being subsets of

a single tile (which is a parameter).

• Atomicity (A): MARS are computed as those iterations that have exactly the same

consumer tiles: given a set of consumer tiles I ⊂ Pn(T ), those points consumed by all

tiles in I are in set A(⃗t), and those points not consumed by any tiles outside of I are

in S (⃗t). Intersecting A(⃗t) and S (⃗t) gives those iterations that have exactly all tiles of

I as consumer tiles.

Because all points in a MARS share exactly the same consumer tiles, and that input

and output are done at the tile level, they have the atomicity property.
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Algorithm 3: Computing the MARS

Input:

D = iteration space,

B =
{

b⃗i : i = 1, . . . , Q
}

= PRDG,

H = {Hi : i = 1, . . . , t} = tiling hyperplanes

{s1, . . . , st} = tile sizes

Result: M(⃗t) = partition of flow-out into MARS, parametrized by tile coordinates t⃗
// T (⃗t) is a tile of coordinates t⃗

let T (⃗t) = {x⃗ ∈ D : ∀i ∈ [[1; t]] : tisi ⩽ x⃗ · n⃗i < (1 + ti)si};
M = ∅;
T = Pn (H); /* All neighboring tiles */

for I ∈ Pn (T ) do
E = T \I;
// A: all tiles in I must be reached by ⩾ 1 dependence

for T ∈ I do
N = H\T ; /* Hyperplanes not crossed */

for b⃗ ∈ B do

// PT,⃗b: b⃗ crosses all hyperplanes of T and no others

PT,⃗b(⃗t) =

T (⃗t) ∩
{

x⃗ ∈ D :
∧

H∈T

(

x⃗+ b⃗ crosses H
)

∧
∧

H∈N ¬
(

x⃗+ b⃗ crosses H
)}

;

end

end

A(⃗t) =
⋂

T∈I

⋃

b⃗∈B PT,⃗b(⃗t);

// S: no tiles in E may be reached by any dependence

for b⃗ ∈ B do
// T = a tile that must not be a consumer

for T ∈ E do
N = H\T ;

// QT,⃗b: b⃗ must cross a hyperplane outside of T

// (i.e. in N), or not cross all hyperplanes of T

QT,⃗b(⃗t) = T (⃗t) ∩
{

x⃗ ∈ D :
[
∨

H∈T ¬
(

x⃗+ b⃗ crosses H
)

∨
∨

H∈N

(

x⃗+ b⃗ crosses H
)]}

;

end

end

S (⃗t) =
⋂

T∈E

⋂

b⃗∈B QT,⃗b(⃗t);

M (⃗t) = A(⃗t) ∩ S (⃗t) ; /* M (⃗t) is a MARS */

M(⃗t) = M(⃗t) ∪
{
M (⃗t)

}
;

end

return M(⃗t)
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• Maximality (M): There is exactly one MARS per set of consumer tiles (I ∈ Pn(T )).

If two points in the flow-out have exactly the same consumer tiles (I), then they belong

to the same MARS.

5.3.4 Dual view: flow-in

Equivalently to partitioning the flow-out set into MARS, it is possible to compute the

partitioning of the flow-in set of each tile into MARS. The flow-in set is computed with the

same algorithm as the flow-out, using the opposite of the dependence vectors.

Intersecting the MARS created by Algorithm 3 (not broken up into individual tile-wise

MARS) with the obtained tile-wise flow-in set then gives a breakup into MARS. This parti-

tioning can be used to figure out which MARS every tile should fetch from other tiles as an

input.

5.4 Implementation and Analysis

It is possible to express all MARS using polyhedral tools (ISL) provided the tile sizes

are constant. However, using the idea from [64], it is possible to use parametric tile sizes by

adding those sizes as additional parameters. We have implemented a MARS procedure in

Python using ISLPy.

5.4.1 MARS procedure implementation

The MARS procedure is available at https://github.com/cferr/mars.git.

To compute the MARS for a given program and tiling hyperplanes, it needs input that

can be computed using publicly available tools:

• The polyhedral representation of a program, to be extracted for instance using PET

[75];

• Dependence vectors, obtained using array dataflow analysis e.g. using iscc;
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• Legal tiling hyperplanes, found for instance by calling PLuTo; the standard equation

and the normal vectors to these hyperplanes are to be provided.

The MARS procedure then runs Algorithm 3. A visualization of the MARS is given with

islplot when the iteration space is two- or three-dimensional. For two-dimensional iteration

spaces, the MARS in the entire iteration space can be visualized; for three-dimensional

spaces, a sample tile needs to be provided and the MARS specific to that tile will be shown.

5.4.2 Handling multi-statement programs

MARS can only be computed for programs exhibiting uniform dependence patterns. A

transformation of the iteration space yielded by a polyhedral analyzer may be necessary to

obtain such a pattern. This is notably the case with programs where multiple statements

exhibit similar dependences.

For instance, we can consider a double-buffered Jacobi 1D code. It is a stencil computa-

tion that has an uniform dependence pattern, similar to that of Figure 3.8. The implemen-

tation of this stencil found in PolyBench/C[61] is as follows:

1 static

2 void kernel_jacobi_1d(int tsteps ,

3 int n,

4 DATA_TYPE POLYBENCH_1D(A,N,n),

5 DATA_TYPE POLYBENCH_1D(B,N,n))

6 {

7 int t, i;

8

9 #pragma scop

10 for (t = 0; t < _PB_TSTEPS; t++)

11 {

12 for (i = 1; i < _PB_N - 1; i++)

13 S75_2: B[i] = 0.33333 * (A[i-1] + A[i] + A[i + 1]);

14 for (i = 1; i < _PB_N - 1; i++)

15 S77_2: A[i] = 0.33333 * (B[i-1] + B[i] + B[i + 1]);
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16 }

17 #pragma endscop

18

19 }

In this code, the computation is done using a double-buffering technique: the same com-

putation is done in two loops over i, alternating which array gets used for reading and

writing. Each statement S75 2 and S77 2 has its own three-dimensional iteration space, re-

spectively (t, 0, i) and (t, 1, i), and depends on the other statement’s results. The dependence

between these iteration spaces is not uniform: for instance, to use A[i-1] or B[i-1], (t, 0, i)

depends on (t− 1, 1, i− 1) (the dependence is (−1, 1,−1) and (t, 1, i) depends on (t, 0, i− 1)

(dependence (0, 1,−1)).

It is however possible to get a single two-dimensional iteration space and a uniform

dependence from this program, by interleaving the iteration spaces of the two statements.

Two bijections are necessary to map these two spaces into a single space. The following

bijections:

T ′
0 : S75 2(t, i) 7→ (2× t, i) and T ′

1 : S77 2(t, i) 7→ (2× t+ 1, i)

give uniform dependences:

B = {B′
0 : (2t, i) 7→ (2t+ 1, i); B′

1 : (2t, i) 7→ (2t+ 1, i− 1);

B′
2 : (2t, i) 7→ (2t+ 1, i+ 1); B′

3 : (2t+ 1, i) 7→ (2t+ 2, i);

B′
4 : (2t+ 1, i) 7→ (2t+ 2, i− 1); B′

5 : (2t+ 1, i) 7→ (2t+ 2, i+ 1)}

and it is then possible to combine them into three dependences:

B = {B′′
0 : (t, i) 7→ (t+ 1, i);B′′

1 : (t, i) 7→ (t+ 1, i− 1);B′′
2 : (t, i) 7→ (t+ 1, i+ 1); }

These three dependences are uniform and apply over the entire (t, i) domain.
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Transformations T ′
0 and T ′

1 change the iteration space in the polyhedral representation.

The domain of memory accesses being the iteration space, we must also compose the trans-

formations with these functions to obtain memory accesses from the transformed iteration

space. For instance, the two write access functions of this program are:

W := {S75 2(t, i) 7→ B[i] and S77 2(t, i) 7→ A[i]}

We compose them with the inverse of the transformation T ′
0 and T ′

1 to obtain the new

access functions:

W ′ := {(t, i) ∈ {2t : t ∈ [0; PB TSTEPS− 1]} × [0; PB N− 1] 7→ B[i];

(t, i) ∈ {2t+ 1 : t ∈ [0; PB TSTEPS− 1]} × [0; PB N− 1] 7→ A[i]}

where odd values of t result in a write to A and even values of t result in a write to B.

In the following evaluation, this procedure is applied to the jacobi1d and jacobi2d

benchmarks for them to yield uniform dependences.

5.4.3 Results

We have run the MARS procedure against a series of uniform dependence benchmarks.

This section evaluates the result on the following questions:

• How many MARS are there per tile?

• What is the dimensionality of the result MARS? In particular, how many singleton

MARS are there?

Evaluated applications

The MARS procedure has been used on the following applications:

• sw: Smith-Waterman dynamic programming algorithm for sequence alignment;

• jacobi-1d: Jacobi 1D stencil;
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Table 5.1: Results obtained from the MARS procedure. # CT = number of consumer tiles; #
MARS = number of MARS; # Singl. = number of MARS of cardinality 1

Dims Application Dependences Tiling hy-
perplanes

# CT # MARS # Singl.

2 sw (1, 0), (0, 1), (1, 1) i+ j, j 3 4 2
2 jacobi-1d (1,−1), (1, 0), (1, 1) t+ i, t− i 3 4 2
3 canonical-3d (1, 0, 0), (0, 1, 0),

(0, 0, 1)
i, j, k 3 7 1

3 gemm (0, 1, 0) i, j, k 1 1 0
3 seidel-2d (0, 1, 1), (0, 0, 1),

(1,−1, 1), (0, 1, 0),
(1, 0, 0), (1,−1, 0),
(0, 1,−1),
(1, 0,−1),
(1,−1,−1)

t, t + i,
4t+ 2i+ j

7 13 2

3 jacobi-2d-r (1, 0, 1), (1, 1, 0),
(1, 0, 0), (1,−1, 0),
(1, 0,−1)

t, t+i, t+j 7 13 4

3 jacobi-2d-d (1, 0, 1), (1, 1, 0),
(1, 0, 0), (1,−1, 0),
(1, 0,−1)

t+ i, t+ j,
t− i, t− j

15 34 6

• canonical-3d: Artificial 3-dimensional example that has a dependence along each

canonical axis;

• gemm: GEMM (BLAS) implementation from PolyBench [61];

• seidel-2d: Seidel 2D stencil implementation from PolyBench;

• jacobi-2d: Jacobi 2D stencil implementation from PolyBench;

The jacobi-2d benchmark is exploited twice, with different tiling schemes: one is rect-

angular tiling combined with skewing, the other one is diamond tiling [9]. We will refer to

them respectively as jacobi-2d-r and jacobi-2d-d.

Table 5.1 shows the results obtained by running the MARS computer on the selected

applications, and Figure 5.5 shows the MARS for a single tile of every application.

Table 5.1 gives the number of dimensions of the iteration space, the dependence pattern,

tiling hyperplanes, the number of consumer tiles per tile (# Cons. Tiles), the number of
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Figure 5.5: Visualization of MARS generated using the MARS calcuiator.
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Table 5.2: Computation time for MARS over 10 runs

Benchmark Min (s) Max (s) Average (s) Std. deviation
canonical-3d 0.150 0.170 0.163 0.007
gemm 0.120 0.130 0.126 0.005
jacobi-1d 0.150 0.180 0.162 0.012
jacobi-2d-d 11.110 12.040 11.547 0.296
jacobi-2d-r 1.130 1.220 1.172 0.031
seidel-2d 2.020 2.250 2.100 0.065
sw 0.130 0.170 0.154 0.014

computed MARS (Nb MARS ) and the number of singleton MARS (that have a single point

per tile).

For the jacobi-2d-d instance, the tiling hyperplanes are not linearly independent. There

are indeed three possible tile shapes; despite 34 MARS being determined, only 26 appear in

the tile shown in Figure 5.5g.

Analysis

Two observations can be made out of the MARS, on their number and the tiles that

consume them. As a general rule, the consumers tiles of a MARS are adjacent to each other,

and the more cutting hyperplanes surrounding a MARS, the fewer dimensions it has. One

notable case is seidel-2d (Figure 5.5e) where a two-dimensional MARS is surrounded by

two one-dimensional ones, close to the t + i and 4t + 2i + j hyperplanes intersection, and

close to the t and 4t+ 2i+ j intersection.

In 2-dimensional iteration spaces, two tiling hyperplanes are enough to tile all dimensions,

in which case there are a maximum of 22
2−1 − 1 = 7 MARS per tile. Our examples, sw and

jacobi-1d, only exhibit 4 MARS, each MARS being consumed by two adjacent tiles.

In 3-dimensional iteration spaces, the number of MARS goes up to 34 per tile on

jacobi-2d-d out of a maximum 32767 (due to the 15 consumer tiles).

As one can expect given the size of Pn(Pn(H)), the complexity of the computation is

such that current machines will not find the MARS in a matter of hours if there are 5 or
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more tiling hyperplanes (i.e. a 232-wide space to enumerate). This is a strong call to prune

the search space. We implemented several optimizations to alleviate this time:

• Figuring out the actual consumer tiles instead of enumerating Pn(Pn(H)). To do this,

we only enumerate Pn(H), and determine for each neighboring tile, it is a consumer

tile (i.e. a dependence leads to it). Let C be the subset of Pn(H) with the actual

consumer tiles.

• Incrementally building the sets of consumer tiles, instead of browsing Pn(C). If A from

Algorithm 3 turns out to be empty, this means that no iteration has the current set of

consumer tiles, so we do not need to check for MARS with additional consumer tiles.

The resulting run times are shown in Table 5.2; even a three-dimensional benchmark with

four non-linearly independent tiling hyperplanes like jacobi-2d-d takes between 11 and 12

seconds to be computed.

5.5 Applications and Future Directions

MARS can be used in a variety of applications where fine-grain knowledge of the tile’s

flow-in origin and flow-out destination is known. In this chapter, we detail two applications:

compression, and memory allocation.

5.5.1 Memory allocation, Compression

MARS can be used to construct a memory allocation for inter-tile communication, sim-

ilarly to what Zhao et al. [90] have done with coarser-grain blocks. The idea is similar:

allocate contiguous blocks of memory for each MARS, and find a suitable layout.

The fact that MARS are not redundant makes them suitable for compression: in general,

decompression of an entire block of data is needed to access part of it. When using MARS,

all the data that is decompressed is actually needed, and therefore there is no compression-

induced redundancy. Such a framework would be similar to works such as Ozturk et al. [58]

with data tiles of different sizes, where each data tile is actually a MARS.
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5.5.2 Error detection

A well-known technique to make systems fault-tolerant is the use of checksums over data

to find out whether errors are present. Techniques such as Algorithm-Based Fault Tolerance

[39] can check the result of computations using an accumulation operator over a fraction of

the iteration space where the result must match some otherwise computed value. If both

checksums do not match, then the results are to be recomputed. MARS can be used to

check the integrity of transmitted data with the same idea: a checksum transmitted along

with each MARS is matched against a real-time checksum. If both do not match, it may

indicate a transmission error, or a storage error if the data is in memory.

5.5.3 A case for merging MARS

In some cases, as it can be observed in Figure 5.5, the irredundancy property yields sin-

gletons, that may cause performance drawbacks, for instance when creating access functions

at the granularity of MARS: such access functions will read or write the exact access data for

each tile, but unless singleton accesses are merged or coalesced with other accesses, these will

incur a bandwidth waste. Coalescing accesses is done in Chapter 6 for a memory allocation.

Another way to alleviate performance issues is to relax the irredundancy property, and

allow for MARS to be merged. This merge process would yield an intermediate partitioning

between very fine-grain MARS and the entire flow-out, which would be the result of merging

all MARS together; studying the potential benefits of such a merging is left for future work.

5.6 Conclusion

In this chapter, we have introduced an element of program analysis, MARS, to determine

sets of data communicated between tiles without redundancy. These sets can be computed

for certain programs with uniform dependence patterns, and their computation can be au-

tomated.
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In the next chapter, we will cover an application of MARS to memory allocation by using

their irredundancy. We have identified several other routes from this chapter. The possible

use cases of MARS include error detection and correction: thanks to the single-producer

property, producer tiles to be replayed can be uniquely identified, while the atomicity and

maximality properties yield coarser sets to apply checksum on than singletons. On the

computation side, MARS computed in this chapter are limited to uniform dependences, yet

a number of common applications feature affine dependences for their inputs (e.g. gemm), or

between computations (e.g. optimal string parenthesization). Supporting affine dependences

warrants a further study, which is done in Chapter 7.
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Chapter 6

An Irredundant and Compressed Data

Layout to Optimize Bandwidth Utilization of

FPGA Accelerators

FPGA accelerators may be used to perform computations on arbitrary data types; their

strength is their ability to make custom operators to process data. Working with these data

types can be done at a certain cost with respect to memory accesses, because of a padding

requirement to keep data aligned at certain boundaries. Such alignment causes redundancy

and under-utilization of bandwidth, but is necessary to keep a random access ability to data.

In Chapter 5, we introduce a decomposition of the flow-in and flow-out of tiles of poly-

hedral programs; this decomposition can be used to transfer data irredundantly, in the sense

that we can guarantee a single transfer of each data. However, we must also ensure that all

bits of data transferred are actually useful, which padding data is not.

Random access patterns can be avoided by using certain data layouts and access patterns

such as CFA introduced in Chapter 4. Keeping the same idea as CFA of using burst transfers,

we suggest to build a memory allocation that is burst-friendly, and irredundant in both

storage and transfer.

In this chapter, we introduce a data layout such that contiguous access patterns are

possible with as little transfer redundancy as possible, using the MARS sets introduced in

Chapter 5, and notably their atomicity and irredundancy properties. By exploiting both

properties, the data layout we build is contiguous and irredundant, but also a candidate for

compression, leading to high bandwidth utilization and data savings.

This chapter makes the following contributions:
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• A memory layout using the MARS from Chapter 5 optimized for a maximum of coa-

lescing opportunities,

• An automatic compression and packing scheme for the MARS-based layout,

• An implementation on a selection of FPGA accelerators for polyhedral benchmarks.

It is organized as follows: Section 6.1 gives the motivation of this chapter, and Section 6.2

places this chapter in its scientific context. Section 6.3 explains how the allocation is con-

structed by laying out MARS and using data packing. Then, Section 6.4 details our FPGA-

specific implementation of this allocation, and Section 6.5 evaluates and discusses it.

6.1 Motivation

Leveraging contiguous accesses often comes with a redundancy cost: reading extra values

that are not used later on is sometimes more profitable than breaking a burst access to avoid

these unused inputs. The cost of such a manipulation can be signficant: considering tiled

stencil computations with time skewing (e.g. that from Intel) for stencils, a bounding box

of the results can be used. The higher the tiles (and the reuse), the higher the volume of

unused data.

Using data flow information to extract contiguity can keep the volume of unused data

within controlled bounds, which was shown in Chapter 4. However, this is not sufficient to

achieve data compression: because compressed data has a size a priori unknown, positioning

data in memory and seeking to random positions, as is still necessary with CFA, is impossible.

We therefore need a finer decomposition of the data flow to enable its compressibility while

maintaining its contiguity.
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6.1.1 Illustrative example: 1D Jacobi stencil

To illustrate the flow proposed in this chapter, we propose a Jacobi-1D stencil as running

example. This kernel updates a one-dimensional sequence of values, and computes each

point as a weighted average of it and its neighbors:

ct+1,i =
1

3
(ct,i−1 + ct,i + ct,i+1)

A C implementation of this stencil is provided in the PolyBench/C suite as the following

code:

1 for (t = 0; t < _PB_TSTEPS; t++) {

2 for (i = 1; i < _PB_N - 1; i++)

3 B[i] = 0.33 * (A[i-1] + A[i] + A[i+1]);

4 for (i = 1; i < _PB_N - 1; i++)

5 A[i] = 0.33 * (B[i-1] + B[i] + B[i+1]);

6 }

This stencil operates over a two-dimensional iteration domain time × space where each

point has a coordinate (t, i). Because such a domain may be arbitrarily large, the whole

dataset may not fit into FPGA on-chip memory, and needs to be optimized before it can

be mapped to the FPGA. This naive implementation of Jacobi-1D cannot fit on-chip for

gigabyte-scale problem sizes, thus requiring tiling for locality. For the sake of simplicity of

the illustration, we have chosen small, diamond-shaped tiles, illustrated in Figure 6.1.

An accelerator for the tiled program processes the domain tile by tile. To execute a tile,

it needs to retrieve intermediate results from previously executed tiles. These intermediate

results are located outside of the accelerator, in off-chip memory, and need to be copied into

on-chip memory.

For this tiling scheme, intermediate results to be retrieved come from the tiles located

below the tile to execute; in Figure 6.2, these tiles are designated as the source of incoming

arrows into the tile to execute. Likewise, the outgoing arrows show those intermediate results
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Figure 6.1: Domain of the Jacobi stencil divided into tiles of size 6 × 6. Each tile contains 18
(t, i) points corresponding to 18 computations of ct,is.
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Figure 6.2: Inter-tile communication pattern for the Jacobi stencil: red arrows indicate data input
into the tile shown in the center, and blue arrows indicate data output from this tile.
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Figure 6.3: Data packing and compression reduce storage and transfer redundancy at the expense
of address alignment and, for compression, predictability of addresses.

that will be used by other neighboring tiles. All of these data transfers are the ones this

work seeks to optimize; improvements of the compute engine fall out of the scope of this

dissertation.

6.1.2 Padding, packing and compression

In order to maximize the utilization of bandwidth, every bit of data transmitted must

be useful. However, with domain-specific data types (e.g., custom fixed point), unused bits

must usually be transmitted due to memory alignment requirements. In the following, we

explain how data contiguity can be leveraged to two ways: packing data to reduce the unused

bits transmitted; and compressing data to further save bandwidth.

Data packing

Most memories are byte-addressable and most processor architectures also require aligned

accesses at word boundaries, usually at 32 or 64 bits. Although FPGA accelerators can op-

erate on arbitrary-precision data types, off-chip data transfers must abide by the addressing

requirements of the external memory. They therefore need to pad the incoming and outgoing

data: in practice, for a 17-bit access, 32 bits of data will be transferred, 15 bits of them being

wasted in padding.
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Note that padding is necessary to enable random accesses to data: it provides the guar-

antee that a given memory cell contains only the requested data and no manipulation needs

to be done to extract it. Data accessed in a contiguous manner does not need this guarantee

and may overlap multiple adjacent cells, as simple wire manipulations on the FPGA will

give back the original data.

Data packing, as illustrated in Figure 6.3, consists in avoiding padding the data so that

words are adjacent at the bit level in memory. Figure 6.3 shows buffer structure for unpacked

and packed data of 17 bits in 32-bit words. Unpacked data has aligned addresses, but

requires extra storage and transfers unused data; packed data has unaligned addresses but

saves storage and avoids some redundant bits from being transmitted. It becomes however

impossible to randomly seek in a packed stream due to misalignment without additional data

processing, but by definition such random seeks do not happen with contiguous accesses.

In our approach, we leverage contiguous accesses to (i) avoid the adverse effects of packing

induced misalignment and (ii) to maximize bandwidth utilization by not padding data.

Runtime data compression

Packing data saves bandwidth by eliminating the padding bits, and is applied indepen-

dently of the data itself. However, further optimisation is possible by exploiting properties

of the data (e.g., correlation between integers in an array) for compression. When this

technique is applied right before / after off-chip communications, the design benefits from a

reduction of I/O cycles (as the amount of data transferred is reduced) without increase of

the computation subsystem as the latency of the compression module can be hidden by the

pipelining structure

Compression is easy to apply to contiguous streams of data, but is not to data where

indexed or random accesses are necessary. We must exhibit access contiguity, as it is in

general impossible to seek within a compressed block without decompressing more data

than needed. Figure 6.3 shows that the position of data within a compressed block is

unpredictable.
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Our approach performs runtime compression and, to maximize its efficiency, creates data

blocks with a contiguous access guarantee to ensure every decompressed piece of data is

used.

In general, the compression algorithm is domain-specific, e.g., ADPCM for voice [21] or

JPEG for images [70]. For FPGA implementations, the choice of the algorithm is also driven

by its throughput: compression and decompression must be able to sustain the input and

output throughput not to become the bottleneck. We choose to illustrate the idea with

a simple differential compression algorithm which encodes a sequence w0w1 . . . wn of N -bit

words as follows:

• Encode w0 as is.

• For 1 ⩽ i ⩽ n:

1. Compute ∆ = wi − wi−1,

2. Let L be the number of leading zeroes of ∆ if ∆ ⩾ 0, or leading ones if ∆ < 0,

3. Encode N − L using ⌊1 + log2(N)⌋ bits, followed by the sign bit of ∆,

4. Encode the N − (L+ 1) lowest bits of ∆.

This technique is especially effective when the distribution of the transferred data is

not spread, typically on benchmarks based on the computation of the average such as our

Jacobi-1D example from subsection 6.1.1.

6.1.3 Contributions

The goal of this work is to propose a source level compiler optimisation to (i)

reorganize data in memory to enable contiguous burst access and (ii) further

improve bandwidth utilization through packing and compression. Our optimization

pass is meant to be integrated within an HLS polyhedral compilation flow, as illustrated in

Figure 6.4; aiming at sitting between the locality optimization phase (tiling) and the HLS
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Figure 6.4: Compiler flow (contributions of this chapter in green)

synthesis stage. In fact, our approach does not replace locality optimizations, it

complements them.

6.2 Related Work

This work comes as part of a global effort to relieve memory-boundness of high-performance

accelerators. In this section, we study other techniques used to relieve the memory wall, some

of which may not apply to compilers due to not being automatable or breaking program se-

mantics.

6.2.1 Data Compression

Data compression saves bandwidth without requiring to modify the program’s algorithm.

It is therefore suitable for many bandwidth-bound problems.

Compression techniques

Data compression in FPGA accelerators is already a necessity for some intrinsically

memory-bound applications such as deep convolutional networks, as no locality optimization

can bring further bandwidth savings. We here focus on two kinds of compression: lossless

and lossy.

Lossless compression Lossless compression guarantees that the decompressed data is

exactly the same as the data before it was compressed. This property makes it possible to
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do seamless, inline compression and decompression as is done for MARS. This is commonly

performed in deep neural network accelerators [1, 34]

Sparse encoding can be considered a form of lossless compression, and is also commonly

found in machine learning applications [26, 48]. Sparse data structures often require indi-

rections, which make them unsuitable for use in polyhedral compiler flows unless the sparse

structure is immutable [38].

Lossy compression It is possible to save more storage and bandwidth by using lossy

compression. Some applications in machine learning can afford a loss of precision without

degrading the quality of the result, e.g. using JPEG-compressed images [57] as inputs. How-

ever, lossy compression alters the data and cannot be automatically inserted by a compiler

unless the user explicitly requests it.

Dynamic data compression

In this work, we automate the compression and decompression of data and it is transpar-

ent to the computation engine on FPGA. Other works [58, 67] perform dynamic, demand-

driven compression without prior knowledge of the data to be handled. Thanks to the static

control flow of polyhedral codes, all the data flow is statically known and it is not necessary

to maintain a cache policy.

6.2.2 Memory access optimization

The layout we propose in this work optimizes memory accesses by exhibiting contiguity

using polyhedral analysis. In this section, we go through other polyhedral memory access

optimizations, and explain other non-polyhedral ways it is possible to improve memory

accesses.

Polyhedral-based optimizations

Using the polyhedral model and loop tiling to capture the data flow is the subject of a

number of works, proposing different breakups of the dataflow. Datharthri et al. [23] and
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Bondhugula [7] propose decompositions of the inter-tile communications to minimze MPI

communications. This work also seeks to optimize the passing of intermediate results, but

the data allocation is not statically determined like in this work.

A MARS-like decomposition of the inter-tile data flow into coarse-grain blocks for MPI

has been proposed by Zhao et al. [90]; our work achieves irredundancy which requires a

finer-grain modeling than the one proposed by [90].

Domain-specific optimizations

Memory access optimizations such as a change of data layout or access pattern can also

be specific to each problem. We show here two cases of domain-specific optimizations.

Data blocking Data blocking (or tiling) is memory layout transformation that chunks

multi-dimensional arrays into contiguous blocks. Similar to loop tiling, data blocking allows

to coalesce accesses to entire regions of the input or output data.

Data blocking can be efficient when the memory footprint of one iteration of an accel-

erator corresponds to a data tile. Although it has been used to optimize machine learning

accelerators [73], it may break spatial locality and degrade performance of accesses that cross

tile boundaries.

Data blocking can be combined with loop tiling and polyhedral analysis to coalesce inter-

tile accesses. Ferry et al. [31] seeks to exhibit the largest possible contiguous units spanning

multiple tiles.

Stencil optimization Stencil computations have regular and statically known memory

access patterns. Domain-specific optimizers like SODA [13] derive an optimized FPGA

architecture and memory layout specific to each stencil.
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Figure 6.5: MARS: Groups of points within a tile which data is contiguous in global memory. In
blue, the MARS produced by the center tile (O1 to O4); in red, the MARS consumed by that same
tile (I1 to I7).

6.3 Memory allocation for FPGA accelerator

This section discusses the memory allocation we propose using the MARS: first, it for-

mulates how to lay out MARS in memory to maximize contiguity of accesses at readback

time; then, it explains how data packing is dealt with using MARS.

6.3.1 Extracting Contiguous Data Blocks

The first step in our method consists in analyzing a program’s behavior with respect to

memory, to determine which data can/should be grouped together as contiguous blocks. The

sought groups of data honor two properties:

• Atomicity: If any data in the group is needed for an instance of the accelerator’s

execution flow (a tile), then the entire group is also needed for the same tile.

• Irredundancy: No data is retrieved or stored more than once into memory throughout

the execution of a single tile.
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These groups of data are determined by using the analysis technique from Chapter 5

within a polyhedral compiler. This analysis yields sets of on-chip memory addresses, such

that all the data from these on-chip cells will be allocated a contiguous block of data in

off-chip memory.

Example

Applying the MARS analysis from Chapter 5 to the Jacobi stencil of Section 6.1.1 gives

the sets of addresses corresponding to the points illustrated in Figure 6.5:

• For the input of each tile, seven contiguous blocks of data labeled I1 to I7 are to be

taken, across three different producer tiles.

• For the output, each tile will produce four contiguous blocks of data labeled O1 to O4.

There is a correspondence between output blocks (MARS) Ox from a tile and input blocks

Iy from other tiles: each Ox corresponds to one Iy in several other tiles.

Without any further information, the result of MARS analysis would make the acceler-

ator require seven input and four output burst accesses. This number could potentially be

reduced. If I1, I2 and I3 were adjacent in memory, it would be possible to make a single

access instead of three, and likewise for I5, I6 and I7. The total number of input accesses

would go down to just three.

In order to reduce the number of accesses to the above, we have to show that it is actually

achievable: the blocks I1 through I7 are read by multiple tiles, and coalescing opportunities

for one tile may be incompatible with another tile’s coalescing opportunities.

The next subsection formalizes this example into an optimization problem seeking to

minimize the number of accesses.

6.3.2 Enabling Coalesced Accesses across Contiguous Data Blocks

From the polyhedral analysis of the previous subsection, we have determined sets of on-

chip data to be grouped as contiguous blocks of data, called MARS. How these blocks are

116



laid out in memory is important for access performance: if multiple MARS happen to be

accessed in a row and they are adjacent in memory, the accesses to these MARS can be

coalesced into a single access and better utilize bandwidth.

This section explains how the “outer layout” of the MARS is determined so as to maximize

the coalescing opportunities.

Properties of the layout

The goal of this work is to minimize the number of I/O cycles, and therefore the data

layout must exhibit contiguity (for both reading and writing). However, that contiguity must

not come at the price of an increase in I/O volume. To model this constraint, we apply two

hypotheses.

Contiguous tile-level allocation We are looking for a layout of MARS in memory, and

know that compression will be applied to them. Due to the size and position of compressed

blocks being unpredictable, it is not feasible to interleave MARS from multiple tiles in

memory. Therefore, we allocate each tile a contiguous block of memory for its

MARS output.

This allocation has two consequences: the write side can be done entirely contiguously,

and we only have to optimize contiguity at the read side.

Irredundancy of storage Under the previous hypothesis, we want to maximize the coa-

lescing opportunities between MARS accesses for the read side only. While it is possible to

obtain this contiguity by replicating the MARS in multiple layouts, one per consumer, doing

so would defeat the goal to save I/O cycles. We therefore choose to store each MARS

only once in memory (irredundant storage).

The goal is now to find a single layout for the MARS produced by each tile, that exhibits

as much read-side coalescing opportunities as possible. We obtain it through an optimization

problem that is defined in the next subsections.
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Example

In the example of Section 6.3.1, it appeared that the number of burst accesses could go

from 7 to 3. Let us show there actually exists a layout achieving these 3 bursts.

Figure 6.5 shows the correspondence between input and output MARS:

• I1, I2 and I3 come from the southwest tile, corresponding to its O2, O3 and O4 blocks.

We would like these three MARS to be contiguous, regardless of which relative order,

to make a single burst.

• I4 comes from the south tile, corresponding to its O2 block.

• I5, I6 and I7 come from the southeast tile, corresponding to its O1, O2 and O3 blocks.

We would also like them to be contiguous.

We do not make any hypothesis on the relative location of data from the southwest tile,

the south tile and the southeast tile. This makes it impossible to obtain fewer than 3 burst

accesses.

The information we have at this point can be used as the constraints and objective of an

optimization problem: we want to maximize the number of contiguities in the layout among

those desired, under the irredundancy constraint. We provide a solver with the following

problem:

• Maximize the contiguities among the desired ones: make MARS O2, O3 and O4 con-

tiguous in any order, and make MARS O1, O2 and O3 also contiguous in any order.

• Per the hypothesis of Section 6.3.2, we want a layout of MARS O1, O2, O3 and O4.

• There can be no fewer read bursts than 3.

The solver returns the following layout of the output MARS for each tile: O1, O3, O2,

O4.

Looking from the consumers, I1, I2 and I3 (resp. southwest O2, O3 and O4) are contigu-

ous; I5, I6 and I7 (southeast O1, O2 and O3) are also contiguous. We can therefore coalesce,
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for each tile, the reads I1, I2 and I3 into a single burst, and I5, I6 and I7 into another burst,

achieving the three sought input bursts.

General case

In this section, we lay out the blocks of data from the MARS analysis to maximize the

coalescing opportunities between them.

With the allocation choice of Sec. 6.3.2, writes are guaranteed to be done without dis-

contiguity. We therefore lay out the MARS to make the read side as contiguous as possible.

In other words, we need to lay out the MARS in memory so that as many MARS as possible

can be read as a coalesced burst.

We propose to model this problem as an Integer Linear Programming optimization prob-

lem as described in this section. Intuitively, if a pair of MARS is needed by a consumer tile

and the two MARS are next to each other in memory, then a coalesced access for the two

(a “contiguity”) is issued. We therefore seek to maximize the number of such contiguities.

The solution to this optimization problem, given by the solver is an ordered list of the

MARS produced by each tile, that allows the minimal number of transactions to read all

MARS input of a tile.

The problem is modeled in two cases: first, the case where all tiles have a single shape

and emit the same MARS; and second, the case where multiple tile shapes exist, in which

case, as stated in Chapter 5, each tile shape emits different MARS and multiple layouts need

to be derived.

Encoding data structures for a single tile shape

We need a number of intermediate variables in order to encode the layout problem as an

ILP problem. We are going to use two data structures to encode the layout permutation:

an explicit permutation mapping, and a successor matrix.

Consider M MARS; let each MARS be assigned a number from 0 to M − 1. The

permutation is then represented by:
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• δi,j ∈ {0, 1} for successor variables; δi,j = 1 encodes that MARS i is immediately before

MARS j in memory.

• γi ∈ {0, . . . ,M − 1} for the explicit permutation; γi is the position where MARS i will

be in the final layout.

The successor matrix encodes the fact that no MARS can have multiple predecessors or

successors with the following constraints:

• ∀i : δi,i = 0

• ∀i :
∑

j δi,j ⩽ 1 (a MARS can only precede at most a single other one)

• ∀j :
∑

i δi,j ⩽ 1 (a MARS can only follow at most a single other one)

•

∑

i

∑

j δi,j = M − 1 (because there are M MARS, we need exactly M − 1 successor

relations)

The permutation σ is such that σ(i) is the new position of MARS number i. σ is

represented by γis where:

• ∀i : 0 ⩽ γi ⩽ M − 1

• ∀i, j : (γj − γi = 1) ⇔ (δi,j = 1) (link between the permutation and successor matrix),

which is encoded using an indicator function as ∀i, j s.t. j ̸= i : δi,j = ⊮γj−γi=1

• ∀i, j : (i ̸= j) ⇒ |γi − γj| ⩾ 1 using Gurobi’s “absolute value” function.

All these constraints are added to the LP, atop of which additional constraints:

• ∀i, j : δi,j + δj,i ⩽ 1 (only one of MARS i, j can follow the other),

•

∑N−1
i=0 γi = N(N − 1)/2 (the sum of all permutations is the same as the sum of the

N − 1 first integers)
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The objective function to maximize is the number of contiguities. It is computed

using the successor function and all pairs of MARS that are consumed per producer tile:

max
∑

P∈P

M∑

i=1

M∑

j=1
j ̸=i

aP,i,jδi,j

Encoding data structures for multiple tile shapes

For the jacobi2d-d benchmark, we observe multiple tile shapes due to the tiling hyper-

planes not being linearly independent. Each tile will belong to a family of tiles that have

the same shape. We’ll then take for each family, the MARS that come out of the tile shape

this tile family has.

Each family will produce a different number of MARS and consume MARS from other

families. Families are given by relations Ri that link tile coordinates. For instance, for

jacobi2d-d, there are three such relations:

• R0 : k4 = k1− k2 + k3 (full tiles),

• R1 : k4 = −1 + k1− k2 + k3,

• R2 : k4 = 1 + k1− k2 + k3

For a given family R, let P(R) be the producer tiles this family of tiles is taking data

from. Each family produces M(R) MARS. Each input MARS from a producer tile P ∈ P(R)

is annotated with the relation R(P ) (R(P ) ∈ {R0, R1, R2}).

If R is the set of family relations, then the LP is modified as follows: for each R ∈ R,

we introduce a permutation σR and variables γR, δR that verify the properties of the above

LP definition.

Then, we modify the objective function to maximize the sum of contiguities across all

families:
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Figure 6.6: MARS data shown without compression, with compression (inside the MARS) and
with MARS compression and packing. Packing the compressed MARS preserves the contiguity of
coalesced accesses.

max
∑

R∈R

∑

P∈P(R)

M(R)
∑

i=1

M(R)
∑

j=1
j ̸=i

aP,i,jδ
R(P )
i,j

Further work could consider ponderation based on the relative frequency of tile families.

Furthermore, for the jacobi2d-d benchmark, we execute only full tiles of relation R0 on the

FPGA, and so only these will benefit from the layout; other tiles executed on the host do

not take MARS as input.

The layout created in this section honors the irredundancy property of the MARS (see

Section 6.3.1), but does not yet take full advantage of their atomicity : the fact that the

MARS are contiguous blocks of data makes them ideal candidates for data packing and

compression. This is what we perform in the next subsection.

6.3.3 Contiguity-Preserving Block Compression

So far, our approach has given a layout of data in memory enabling coalesced accesses to

contiguous blocks of data produced and consumed by an accelerator. These blocks have an

atomicity property that we can further exploit to save bandwidth, by applying data packing

and compression, as illustrated in Figure 6.6.
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Combining compression and packing

Compressed blocks of data must be considered atomic in the sense that no random

accesses into them are possible. This atomicity property is borne by the MARS, as each

MARS data block is entirely used when it is accessed, i.e. there are no partial accesses to a

MARS.

Compressing the MARS reduces the size of the data and therefore saves bandwidth and

storage space; however, it can also break the contiguity brought by the layout of Section 6.3.2

as illustrated by Figure 6.6. To preserve it, we also apply packing to the compressed MARS,

making them immediately adjacent to each other in memory. Packing compressed MARS

also spares the accelerators from unused reads due to padding.

Need to preserve metadata

As the size of compressed blocks depends on their data, it is impossible to know the exact

size of each access. However, the size of a burst access must be known prior to the request

being issued; additionally, using an estimation of the size or an over-approximation would

result in unused input data or additional requests to fill in missing data.

In order to be able to exactly fetch the right size, it is necessary to keep track of the

size of each compressed MARS. Moreover, the packing of compressed MARS means that

the start of a compressed block may be improperly aligned. It is also therefore necessary to

keep track of the alignment of each MARS for proper decompression. In our implementation,

bookkeeping is done using on-chip markers that are filled in after each MARS is compressed.

Details are in Section 6.4.3.

Packing will cause unused input data to enter; however, its size is bounded to one aligned

word at the beginning and one aligned word at the end of each transaction. This input

redundancy is notably independent of the size of the MARS.
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6.4 Implementation and Analysis

In this section, we show how we transform an HLS accelerator description in order to

optimize its off-chip memory accesses for bandwidth utilization.

The off-chip data layout and compression proposed in Section 6.3 can be automatically

implemented around the existing description of a tile in HLS. The result is a sequence of

steps:

• Read MARS layout data and non-MARS input data from off-chip memory into on-chip

FIFOs,

• Decompress the input data into FIFOs,

• Dispatch MARS data into on-chip buffers with an allocation suitable for computation,

• Perform the computations onto on-chip buffers,

• Collect MARS output data from the on-chip buffers into FIFOs,

• Compress the collected data,

• Write back the results into MARS layout in off-chip memory.

This section explains how this implementation has been done using high-level synthesis

tools: it covers how the polyhedral control flow is simplified for the FPGA accelerator

(Section 6.4.1), how the complex data structures describing the MARS are turned into

two simple decompression/dispatch and collect/compression steps (Section 6.4.2), and how

compression is implemented (Section 6.4.3).

6.4.1 Simplifcation of polyhedral control flow on FPGA

Besides tiling, we have to perform a number of optimizations to get a working accel-

erator with MARS input/output without incurring a significant slowdown or increase in

accelerator’s area.
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Tile shifting

It is desirable to have a simple control flow on the accelerated part of the program. One

such simplification that is made possible by the uniform dependence is to make on-chip

computations independent of the tile’s position in the iteration space.

All iterations within a tile can be decomposed into the sum of two vectors: one vector

A⃗ which goes to one point in the tile (called the tile’s origin), and one vector b⃗ from that

point to the actual iteration, such that the latter does not depend on the tile’s parameters.

Thanks to the uniform dependence pattern, iteration b⃗ has the same dependences as A⃗+ b⃗,

and therefore we can iterate only over the space of a tile defined by the b⃗s, which greatly

simplifies code generation.

Host/FPGA dispatching of tiles

The FPGA accelerator must have a simple control structure to exhibit as much parallelism

as possible. Therefore, only full tiles are executed on FPGA. Full tiles also all have the same

volume of I/O, regardless of their position in the iteration space.

Partial tiles, i.e. those that contain space boundaries, are run on the host CPU, using

the original program’s allocation. To permit this, data computed on FPGA is taken back

from MARS into the original program’s memory, and MARS are created back from partial

tiles results. It can be demonstrated that no FPGA tiles need any missing MARS data from

partial tiles, and therefore there is no issue in writing part of the MARS for these tiles.

The operations performed to execute a partial tile (on the host) are:

• Read MARS from neighboring full tiles that were executed on FPGA, remap their data

to its original location,

• Execute the tile’s iterations using the original allocation,

• Write back MARS by copying data from the original allocation, skipping cells that

would be in MARS yet have no producer iteration.
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The control flow necessary for compression would significantly lengthen the execution of

host tiles. Therefore, only tiles which producers and consumers are all executed on FPGA

will use compression.

6.4.2 From MARS to Collect/Dispatch Functions

Similarly to computations, the control flow of transfers has to be as simple as possible.

This way, the HLS tool can extract the requested burst accesses from the code. However,

MARS have complicated shapes as illustrated in Figure 5.5, and cannot in general be de-

scribed as a single, perfect loop nest without guards.

The computations on the tile are independent of the tile’s parameters, therefore the on-

chip memory addresses accessed for different tiles will be the same, and the placement of

MARS will not vary across tiles. We therefore statically compute the position of MARS

data and place it in a ROM.

Read and write operations then happen with a very simple loop nest that takes the

on-chip addresses from that ROM while performing sequential accesses on the external bus.

The input and output data of each tile is respectively copied into and out of on-chip

buffers before the tile execution takes place and after it has fully completed. This is the

step where the data goes from a contiguous layout to a non-contiguous layout (suitable for

execution) and vice-versa.

Implementing these dispatch and collect steps requires to describe each MARS so that

the data contained in it is placed into, or taken from, the right location in on-chip memory.

Before dispatch and after collect, the data is located into FIFOs in the contiguous layout.

MARS can have arbitrary complex shapes, and cannot in general be described using

simple loops. However, it is possible to fully unroll these loops and obtain a list of on-chip

addresses for each MARS. Such unrolled lists are placed into read-only memories on chip.

Iterating through these ROMs as in Figure 6.7 gives the corresponding addresses. The size
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1 // MARS Dispatch

2 for(int i=0; i<33; ++i) {

3 // take on -chip address from ROM

4 struct mars_transfert mt = FPGA_MARS_IN_TBL[i];

5 switch (mt.array) {

6 // on-chip random write

7 case MARS_DATA_ENUM ::A: {

8 marsToMem_A(mt.dim0 , mt.dim1);

9 break;

10 }

11 case MARS_DATA_ENUM ::B: {

12 marsToMem_B(mt.dim0 , mt.dim1);

13 break;

14 }

15 }

16 }

Figure 6.7: Structure of the MARS dispatch implementation (off-chip to on-chip layout)

of these ROMs is notably only dependent on the tile size, and not on the problem size or

data type.

6.4.3 Automatic compression

When the data is in the contiguous layout in the form of MARS, it can be seamlessly

compressed and decompressed, and the compressed MARS can be packed to preserve conti-

guity. We explain here the compression, packing and decompression steps, along with how

the compression metadata is taken care of.

Compressing Data and Packing MARS

The compression step is relatively straightforward: the compression module takes its in-

put from the collect step FIFO, and generates a compressed stream of data from it. The

layout of the data in this FIFO is not altered by the compression step. Likewise, the decom-

pression step takes a stream of compressed words and decompresses it into a FIFO, which is

then used by the MARS dispatch step. MARS packing is transparently implemented by the

compression step: because MARS are provided in a contiguous manner from the collect step,
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the first word of each MARS will be immediately adjacent to the last word of the previous

MARS in the compressed data stream.

Our compressor, which algorithm is given in Section 6.1.2, is pipelined with an initiation

interval of 1 cycle, despite a loop-carried dependence.

The difficult part to implement is decompression: because not all MARS from a given

tile are decompressed, we need to be able to seek at the start of a particular MARS. This

ability is given by metadata described in the next paragraph.

Metadata management

The consequence of MARS compression is that their size is unknown a priori. To preserve

the contiguity of the layout from Section 6.3.2, we must avoid padding the compressed

MARS to preserve alignment, Therefore, the compressed MARS are packed and immediately

adjacent to each other in memory.

To keep track of the position of each MARS, we use a data structure with two pieces

of information: a coarse-grain position indicating how far (in aligned words) to seek, and a

fine-grain position marker that specifies which bit is the first of the said MARS.

Because the length of MARS is known at compile time and constant across tiles, the

position of the markers within the uncompressed stream is also constant. Therefore, like

the MARS descriptions, the positions of markers (i.e. start of each MARS) within the

uncompressed stream are put into a ROM:

1 #define NB_MARKERS 3

2 #define MARKERS {62, 63, 64}

The markers for the compressed stream are maintained within an on-chip cache, which

size is specified at synthesis time via a macro:

1 struct compressed_marker <NB_MARS_POS_BITS , LOG_BUS_WIDTH > markers[

COMPRESSION_METADATA_SIZE ][ NB_MARKERS ];

The allocation within this cache is done from the host: registers are used to specify

whether a tile’s MARS are compressed, whether its dependences are, and where the markers
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Benchmark Tile Sizes In MARS Out MARS Read Tr. Write Tr.
jacobi-1d 6× 6, 64× 64, 200× 200 7 4 3 1
jacobi-2d 4× 5× 7, 10× 10× 10 28 13 10 1
seidel-2d 4× 10× 10 33 13 10 1

In MARS = Number of flow-in MARS; Out MARS = Number of flow-out MARS;
Read Tr. = Number of (flow-in) read transactions;

Write Tr. = Number of (flow-out) write transactions

Table 6.1: Characteristics of the selected benchmarks. The number of bursts per tile accounts for
layout-induced access coalescing and is independent of tile and problem size.

for its dependences are located. This location depends on the size of the space; for the Jacobi

stencil, the formula is:

1 unsigned compressionMetadataAllocation(

2 int tsteps , int n, int M1 , int M2 , int k1 , int k2) {

3 return (k2) + M2DEC_FORMULA + M2 * ((k1 - 1) & 0x01);

4 }

It should be noted that the markers structure is persistent between runs. It is updated

by the MARS write step and used by the MARS read step. This update prevents the current

HLS tools from constructing a macro-pipeline (e.g. using the HLS DATAFLOW pragma) unless

the structure is in a separate module.

6.5 Evaluation

We evaluate our approach with respect to the following questions:

• Compile-time performance: How much time does it take to compute the MARS

layout?

• Design quality: How does using MARS affect the FPGA accelerator’s area consump-

tion?

• Runtime performance: How much I/O cycles do compressed MARS save with re-

spect to a non-MARS memory layout?
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• Applicability: How does the data type, tile size and problem size affect the compres-

sion ratio?

6.5.1 Protocol and benchmarks

Benchmarks

We have selected the following applications from the PolyBench/C suite[61]:

• jacobi-1d: Jacobi 1D stencil, as used in the running example;

• jacobi-2d: Two-dimensional version of the Jacobi stencil, exhibiting few and simple

MARS;

• seidel-2d: More complex benchmark exhibiting a higher number of MARS with more

complex shapes.

Layout determination was done using the Gurobi solver (version 10.0.3 build v10.0.3rc0

(linux64)).

The data types used are fixed-point numbers (18 bits, 24 bits, 28 bits) and floating-point

numbers (float, double). We also ran simulations with a 12-bit fixed-point data type without

synthesizing it, Vitis HLS being unable to infer bursts from that data type.

The chosen applications provide a non-MARS data layout in their original code. Because

FPGA developers usually try to seek burst accesses where possible, we have created two

access patterns on the non-MARS layout to compare against that try to exhibit bursts:

• A minimal access pattern, fetching and storing the exact I/O footprint of the tile,

letting the HLS tool infer bursts where possible.

• A rectangular bounding box of the accessed data like done in PolyOpt/HLS [60], which

description is simple enough to infer only burst accesses.

Both access patterns are generated using a polyhedral code generator available in ISL [74].
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Hardware platform

We used a Xilinx ZCU104 evaluation board, equipped with a xczu7ev MPSoC. We ran

Pynq 3.0.1 with Linux 5.15 and synthesis was done using the Vitis/Vivado suite version

2022.2.2 All benchmarks, are running at a clock frequency of 187 MHz and communicate

with the off-chip DDR using one non cache-coherent AXI HP port.

Protocol

Each benchmark is run for each data type, each space size and tile size. Part of the

computation is done on the host: incomplete tiles are executed on a single thread on the

Cortex-A53 CPU of the MPSoC. Transfer cycles are measured only for the FPGA tiles and

do not account for the host.

Cycle measurements are gathered using an on-FPGA counter and the area measurements

are extracted from Vivado place and route reports.

Table 6.1 shows the characteristics of each benchmark, in terms of number of MARS,

and number of bursts after coalescing optimization of Sec. 6.3.2.

6.5.2 Results and discussion

Runtime performance

Figure 6.8 shows the bandwidth measured outside the accelerator for each data type and

each benchmark; Figure 6.9 shows the effective bandwidth, which accounts for the compres-

sion ratio (counted positively) and the redundancy due to padding (counted negatively).

It appears that the compressed MARS baseline consistently shows an increase in band-

width utilization, regardless of the benchmark and baseline. There are multiple factors to

explain this increase.

Compression and iteration space dimensionality For the jacobi1d benchmark, the

original one-dimensional allocation already enables the exhibition of burst accesses. In this

case, non-compressed MARS baseline gives little performance increase compared to the
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Figure 6.8: Bandwidth utilization as seen from outside the accelerator.
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Figure 6.9: Effective bandwidth: bandwidth after decompression, minus redundancy.
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orignal allocation and bounding box. However, using compression increases the effective

bandwidth, even more so with larger tiles: the larger the tile, the more the padding data

transferred. For small tile sizes like 6 × 6, the gains are marginal if any: the number of

compressed elements is too small to exhibit large gains from compression. This effect is also

visible in the jacobi2d stencil with tile size 10× 10 (Figure 6.9b). Compression algorithms

selected based on the data used could yield a higher effective bandwidth, yet our benchmarks

do not feature real-life data sets.

For the 2d examples that have three-dimensional iteration spaces, using MARS, even

without compression, is already profitable compared to the non-MARS layouts: most of the

gains are due to contiguity more than compression.

Effect of data type On the jacobi-1d benchmark, the choice of a 200×200 tile size shows

a more significant benefit in using compressed MARS for fixed-point data types than floating-

point. This is explained with the better compression ratio: when modeling continuous spaces

like those used on the Jacobi stencils, neighboring fixed-point values will have more higher

bits in common than floating-point data where neighboring values mostly only share the

exponent.

Compile-time performance

Table 6.2 shows the time it took for each benchmark to be run through the layout

determination and code generation framework. The compilation process does not take more

than a few seconds to execute for the benchmarks we selected, starting from the polyhedral

representation of the program to the end of HLS code generation. Notably, the layout

determination ILP problem only depends on the number of MARS and is independent of

the tile size.

134



Table 6.2: Layout Computation and Code Generation Time

Benchmark Tile Size Compile Time (s)
jacobi-1d 6× 6 0.76
jacobi-1d 64× 64 0.68
jacobi-1d 200× 200 1.02
jacobi-2d 4× 5× 7 5.57
jacobi-2d 10× 10× 10 5.09
seidel-2d 4× 10× 10 3.21

Design quality

Figure 6.10 shows the total area occupied by our benchmarks, with respect to the different

memory allocation baselines. One tile size per benchmark is considered. Table 6.3 shows a

breakdown of the area for the jacobi-2d benchmark with respect to layout/access pattern

(naive, bounding box, MARS), and data type.

MARS introduces extra control logic and extra I/O functions that the other baselines do

not have. It is therefore normal to observe area increases with this baseline. Figure 6.10a and

Figure 6.10a show the LUT and FF utilization of the three considered benchmarks, varying

the data type, for one tile size and one metadata size per benchmark. We observe that

the MARS baseline consistently uses more LUT and FF than the bounding box baseline;

however, this is not the case with respect to the original allocation. For instance, on the

seidel2d benchmark, the original allocation baseline consumes 44% more LUT than the

MARS baseline (34752 vs. 24000). This is explained by a complex control flow: tiles of that

benchmark are skewed, resulting in a complex access pattern and control logic for the input.

As Figure 6.8 shows, this baseline also has the lowest access performance due to the access

pattern’s complexity.

The logic area increases with the data type width. This is illustrated in Figure 6.10a.

This increase is more sensible in jacobi1d where the on-chip arrays are implemented in logic

instead of Block RAM, which effect is also visible in Figure 6.10d.

Regarding the DSP and BRAM utilization, Figure 6.10c and Figure 6.10d show that the

MARS baseline consistently requires more DSP and BRAMs than the two other baselines.
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Table 6.3: Occupied area for jacobi-2d, tile size 10x10x10. MARS versions contain a scratchpad
memory for 11520 compression metadata.

Layout Data type LUT FF BRAM DSP
naive 18-bit 10265 11299 5 5
naive 24-bit 10345 11418 6 5
naive 28-bit 10746 11667 6 3
naive float 11359 13073 6 14
naive double 13411 15275 12 23
B-Box 18-bit 8693 10181 2 5
B-Box 24-bit 8980 10572 3 5
B-Box 28-bit 9471 11010 3 3
B-Box float 9190 11246 3 10
B-Box double 11012 13343 6 17
MARS 18-bit 18148 16437 87 42
MARS 24-bit 18589 16666 89 42
MARS 28-bit 19050 16877 89 40
MARS float 19774 18342 89 51
MARS double 27984 21508 102 60

This is expected: the MARS baseline performs all the I/O operations other baselines also

perform, plus compression and on-chip data layout change. To this aim, FIFOs holding all

the MARS data are implemented only on the MARS baseline, and require extra BRAMs.

The extra DSP blocks for MARS baselines come from the address computations that are

performed inside the I/O units. Indeed, the size of the space is passed as a parameter instead

of being a constant, thus requiring true multipliers.

Applicability

Figure 6.11 shows the compression rate for each data type and tile size for the jacobi1d

benchmark. Two ratios are shown: the true ratio which accounts only for the bit savings due

to compression, and a ratio with padding that accounts for the savings due to not padding

the data. The ratio with padding is the one our accelerators really benefit from, because the

data is not packed in memory except in compressed MARS form.

Overall, compressing the data for the selected benchmarks is almost always profitable,

possibly largely as the compression ratio goes up to 5.09:1 for 200×200 tiles and 18-bit type.
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Figure 6.10: Area statistics for the three benchmarks. Tile sizes are 200 × 200 for jacobi1d,
10× 10× 10 for jacobi2d and 4× 10× 10 for seidel2d.
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Figure 6.11: Compression ratio vs. data type and tile size for jacobi1d

We can observe that large tiles (64×64, 200×200) exhibit closer compression ratios than

smaller tiles (6 × 6). This discrepancy can be explained by the compressed chunks being

too small to benefit from the data’s low entropy; for the smallest data type and tile size,

compressing data is even worse than not compressing.

6.6 Conclusion

In this chapter, we introduce a novel global memory layout for FPGA accelerators that

maximises contiguity of the accessed data under constraint of irredundancy. We evaluate our

approach against access patterns derived from the original layout and show that a MARS-

based partitonning of the data allow a substantial increase of throughput and decrease of

transfer time at the cost of a minimal resource increase.
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Chapter 7

An Irredundant Decomposition of Data Flow

with Affine Dependences

7.1 Introduction

In the previous chapters, we have covered data transfer optimizations for polyhedral

programs that have uniform dependences. The scope of these optimizations is limited to

intermediate results produced by these programs, due to uniform dependences. In the poly-

hedral model, it is however possible to entirely determine the data movement of the program,

and optimize it in two respects: first, reducing the amount of communication by exhibit-

ing locality ; second, by optimizing the existing communications to reduce their latency and

better utilize the available bandwidth.

In this chapter, we broaden the scope of the analysis of Chapter 5, to also support input

data. Like it is done for intermediate results, input data transfers need to be optimized for

both locality and memory access performance. This is even more important when the same

input data is reused and transferred multiple times to the accelerator over the course of an

entire execution.

Dependences to input variables are rarely uniform, because the data arrays usually have

less dimensions than the domain of computation. The existing dependence-based partitioning

works must therefore be extended to support affine dependences to input variables, and to

propose a re-allocation of these variables.

This chapter seeks to extend the partitioning of Chapter 5 to handle the entire data flow

of the tile and maximize access contiguity. Its contributions are as follows:

• We propose a partitioning scheme, called Affine-MARS, of data spaces and iteration

spaces with a pre-existing tiling,
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• We formalize the construction of this partitioning scheme and determine its limitations.

This chapter is organized as follows: Section 7.2 justifies this work on partitioning itera-

tion and data spaces; Section 7.3 gives the notions of MARS and the linear algebra concepts

used throughout this work; Section 7.4 proposes construction methods for Affine-MARS ac-

cording to the dependences; finally, Section 7.5 compares this approach to existing iteration-

and data-space partitioning methods.

7.2 Motivation

The motivation of this work stems from two driving forces: the necessity to exhibit data

access contiguity, and the limitations of existing analyses preventing efficient (coalesced)

memory accesses.

7.2.1 Necessity of spatial locality

To motivate this work, we can consider a matrix multiplication program. At each step

of its computations, it needs input values (ai,k and bk,j), an intermediate result (partial sum

of ci,j) and produces a new result. Previous work has shown that using loop tiling increases

the performance due to improved locality. When tiling is applied, the matrices are processed

in “patches” as illustrated in Figure 7.1.

In this application, multiplying matrices A = (ai,j) and B = (bi,j) is done by computing

all ai,k × bk,j. Loop tiling, for locality, can be applied and gives a division of the space as in

Figure 7.1.

In this example, an entire patch of each input matrix A, B is transferred for the execution

of each tile.

Despite the added locality, the application can still be memory-bound: tiled matrix prod-

uct lacks data access contiguity. Barring any data layout manipulations, data is contiguous

within a row (for row-major storage) or column (for column-major storage). A patch of A, B

or C is never contiguous because it contains multiple parts of contiguous rows (or columns).
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Figure 7.1: Tiled matrix product, and footprint of a tile on the matrices. Each footprint “patch”
is composed of multiple contiguous rows or columns, but none of the patches are entirely contiguous
in memory.

The lack of contiguity therefore induces multiple short burst accesses to retrieve the entire

patch.

Like for intermediate results, it is desirable to increase spatial locality and leverage conti-

guity to obtain higher performance on the input variables. Data blocking has been known to

increase the performance of matrix multiplication, especially because data block correspond

exactly to the “footprint” of iteration tiles on the matrix.

7.2.2 Limitations of existing transformations

Although data tiling is sufficient for matrix multiplication, more complex computational

patterns require a finer data partitioning.

Chapter 5 proposes a breakup of intermediate results of programs with purely uniform

dependence patterns, that enables contiguity. However, such dependence patterns exclude

commonly found affine dependences, such as the broadcast-type dependences of matrix mul-

tiplication, despite there existing a natural breakup like data blocking.

Moreover, automatic data blocking is mostly applied by domain-specific compilers that

have to generate the memory allocation (e.g. Halide [62], AlphaZ [85]). When there exists
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a memory allocation and data layout in the input code, compilers follow it unless specific

directives (e.g. the ARRAY PARTITION directive in FPGA high-level synthesis tools based on

[17]) are given to them. Allowing the compiler to change this allocation would open the door

to better bandwidth utilization. Works on inter-node communication [23, 90] where memory

allocation only exists within the nodes (and not across nodes) can resort to very specific

groupings of data to minimize the communication overhead; it makes sense to apply this

idea likewise to host-to-accelerator communications, despite there existing a global memory

allocation.

In this work, we generalize the principle of data blocking to automatically partition the

data arrays in function of when (in time) they are consumed. This approach can only be

guaranteed to work with a specific class of programs called polyhedral programs where the

exact data flow is known using static analysis.

In the same approach, we propose a secondary partitioning of the intermediate results;

notably, this generalization coincides with an extension of the scope of Chapter 5 to affine

dependences.

7.3 Background and hypotheses

We propose an automated approach to partitioning the data flow of a program. To

construct it, we rely the polyhedral analysis and transformation framework and elements of

linear algebra that this section introduces.

7.3.1 Polyhedral representation, tiling

To be eligible for affine MARS partitioning, a program (or a section thereof) must have

a polyhedral representation. It may come either from the analysis of an imperative program

(e.g. using PET [75] or Clan [4]) or a domain-specific language. In any case, the following

elements from Table 3.1 are assumed to be available:

• A d-dimensional iteration domain D ⊂ Zd, or a collection of such domains,
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• A k-dimensional data domain A,

• A collection (φi)i of access functions φi : D → A, defining the reads and writes at each

instance,

• A polyhedral reduced dependence graph (PRDG), constructed e.g. via array dataflow

analysis [27].

The core elements extracted from the polyhedral representation are the dependences,

that model which data must be available for a computation (any point in D) to take place.

The data flow notably comprises two kinds of dependences we focus about in this chapter:

• Flow dependences: correspond to passing of intermediate results within the polyhedral

section of the program,

• Input dependences: correspond to input data going into the program.

Both can be mapped to affine functions corresponding to the following definition:

Definition 1. A dependence function is any affine function from an iteration domain D to

another domain D′ (iteration or data). In particular, a dependence function is a single-valued

relation (each element of D has a single image).

Each dependence will be noted B, and as an affine function, it is computed as B(x⃗) =

Ax⃗+ b⃗ with A a matrix and b⃗ a vector.

Each domain is a subset of a Euclidean vector space E ⊂ Zd. In particular, every point

x ∈ D is associated to a vector x⃗ ∈ E. Section 7.3.2 gives further elements of linear algebra

used throughout this chapter.

In previous chapters, we were only relying on uniform dependences; in this chapter, we

need a formal definition of an affine dependence, which is provided below.

Definition 2. A dependence B(x⃗) = Ax⃗ + b⃗ is said to be uniform when A is the square

identity matrix. A collection of dependences B1, . . . , Bn are uniformly intersecting if they all

have the same linear part, i.e. the same A matrix.

144



To create a partitioning of the data spaces, our work relies on an existing partitioning

of the iteration space. Loop tiling [41, 63, 68, 79], as introduced in Chapter 3, creates such

a partitioning. It uses tiling hyperplanes to do so. Each hyperplane is defined by a normal

vector (of unit norm). Tiles are periodically repeated, with a period s called the tile size.

We notably use scaled normal vectors that translate a point from a tile to the same point in

another tile by crossing one tiling hyperplane.

In this work, we assume tiling hyperplanes are linearly independent from each

other. Each tile has (unique) coordinates that are represented by a t-dimensional vector

t⃗ = (i1, . . . , it) where t is the number of tiling hyperplanes. This tile is the set defined by

T (⃗t) =






x⃗ ∈ E :

∧

j∈{1,...,t}

sjij ⩽ x⃗ · n⃗j < sj(1 + ij)







The footprint of a dependence B and a tile T (⃗t) is the image of the tile by the dependence:

B
〈
T (⃗t)

〉
=
{
B(x⃗) : x ∈ T (⃗t)

}

7.3.2 Linear algebra

In this chapter, we use several fundamental results from linear algebra. Below are re-

minders of them for the reader’s reference.

Spaces and bases

Definition 3. Let E be an Euclidean vector space of d dimensions with its scalar product

noted x⃗ · y⃗. Let B = (e⃗1, . . . , e⃗d) be a basis of E. B is called an orthonormal basis of E when

for all i ̸= j, e⃗i · e⃗j = 0 and for all i, e⃗i · e⃗i = 1.

Proposition 3. Any Euclidean space E of d dimensions admits an orthonormal basis.

The proof of Proposition 3 is done by applying the Gram-Schmidt basis orthonormaliza-

tion to an existing basis.
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Definition 4. The vector space of all linear combinations of a number of vectors (e⃗1, . . . , e⃗n)

is noted vect(e⃗1, . . . , e⃗n). Notably, that space has up to n dimensions, and exactly n dimen-

sions if all the n vectors are linearly independent.

Definition 5. Two subspaces S1 and S2 of a vector space E are supplementary into E when

their intersection is the null vector 0⃗, and there exists a decomposition of all x⃗ ∈ E as x⃗1+ x⃗2

with x⃗1 ∈ S1 and x⃗2 ∈ S2. That decomposition is notably unique.

Linear applications

Definition 6. Let A : E → F be a linear application. The subspace K of E such that

∀x⃗ ∈ K,Ax⃗ = 0⃗ is called the null space of A and is noted ker(A).

Definition 7. Let A : E → F be a linear application. The image of E by A is noted A ⟨E⟩.

Likewise, the image of a subspace S ⊂ E by A is noted A ⟨G⟩. The preimage of a subspace

T ⊂ F is noted A−1 ⟨F ⟩.

Proposition 4. If A : E → F is a linear application, E has d dimensions, and ker(A) is its

null space, then let k ⩽ d be the dimensionality of ker(A). There exists a d− k-dimensional

supplementary I of ker(A) in E, such that:

∀x⃗ ∈ I, (Ax⃗ = 0⃗ ⇒ x⃗ = 0⃗)

7.4 Partitioning Data and Iteration Spaces

This section constitutes the core of our work: it proposes a breakup of the iteration

and data spaces based on the same properties as the existing uniform breakup, detailed in

Section 7.4.1.

The reasoning leading to the MARS starts from a simple, restrictive case (one single

dependence, Section 7.4.3) and progressively relaxes its hypotheses (multiple uniformly inter-

secting dependences, Section 7.4.4 and non-uniformly intersecting dependences, Section 7.4.5).
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The last step of the reasoning in Section 7.4.6 adds the constraint of partitioning an existing

tiled space, which allows to partition intermediate results.

7.4.1 Case of uniform dependences

Maximal Atomic irRedundant Sets (MARS) are introduced in Chapter 5. They are

defined as a partition of the flow-out iterations of a tile, such that every element of the

partition is the largest set of iterations that verifies:

• Atomicity: consumption of a single element from a MARS implies consumption of the

entire MARS.

• Maximality: considering all the consumers of a MARS M0 (C0) and all the consumers

of another MARS M1 (C1), if C0 = C1, then M0 = M1.

• Irredundancy: each element of the MARS space belongs to no more than a single

MARS.

While Chapter 5 uses the flow-in and flow-out information in the sense of [7], input data

and output data do not belong to this information. This work instead resorts on the notion

of footprint from [2]; notably, the notion of flow-in iterations of a tile coincides with that of

a footprint of a tile (of iterations) on another tile of iterations.

The properties of MARS constructed with uniform dependences are the same as those

sought in this chapter. Merely proposing a partition of the iteration or data spaces satisfies

the irredundancy property; the properties to actually check from the partitioning are the

atomicity and maximality.

7.4.2 The problem: uniform versus affine dependences

In the uniform case, MARS can be constructed by enumerating all the consumer tiles of a

given tile, i.e. those other tiles that need data from that tile. The uniformity guarantees that

there are a finite number of consumer tiles, and that all tiles will exhibit the same MARS
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regardless of their position in the iteration space (i.e. MARS are invariant by translation of

a tile).

Affine dependences do not guarantee a finite number of consumer tiles; it may be para-

metric or potentially unbounded. Also, it becomes necessary to assert when the invariance

by translation is possible.

In the rest of this section, we will prove, for one and multiple dependences:

• The existence of a finite set of representatives of all consumer tiles, suitable

to determine the MARS partition,

• The invariance of the partitioning by a translation of a tile, or conditions to

guarantee it.

7.4.3 Case of a single affine dependence

The simplest case is when there is a single affine dependence between a tiled iteration

space and a data space. This subsection starts with an example and explains the general

case afterwards.

Example

To start with, we introduce an example with a single dependence, and non-canonical

tiling hyperplanes.

• Domain: {(i, j) : 0 ⩽ i < N, 0 ⩽ j < M}, basis vectors e⃗i, e⃗j

• Dependence : S0(i, j) 7→ A(i), represented as B(i, j) = (i) (i.e. B(x⃗) = Ax⃗ + b⃗ with

A : (i, j) 7→ (i) and b⃗ = 0⃗).

• Tiling hyperplanes : H0 : i+ j, H1 : j − i

• Normal vectors: n⃗1 = (1, 1), n⃗2 = (−1, 1); scaled normal vectors (w.r.t. tile size):

n⃗1 = (s/2, s/2), n⃗2 = (−s/2, s/2)
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• Tile size : s ∈ N∗

We want to construct the MARS on the A data space. To do so, we are going to compute

the footprint [2] of a tile onto the data space along the dependence B; then, by noticing

that all footprints are a translation of the same footprint, we will determine parametrically

which tiles have intersecting footprints, and compute the MARS using the same method as

Chapter 5.

We first define a tile of iterations with a parametric set : we call T (i0, i1) the set :

T (i0, i1) = {(i, j) : si0 ⩽ i+ j < s(1 + i0) ∧ si1 ⩽ j − i < s(1 + i1)}

The footprint of T (i0, i1) by the dependence B, appearing in Figure 7.2, is therefore:

B ⟨T (i0, i1)⟩ = {(i) : ∃j : si0 ⩽ i+ j < s(1 + i0) ∧ si1 ⩽ j − i < s(1 + i1)}

where the existential quantifier may be removed:

B ⟨T (i0, i1)⟩ = {(i) : s(i0 − i1 − 1) < 2i < s(i0 − i1 + 1)}

Given (i0, i1), we now seek the other tiles which footprint’s intersection with B ⟨T (i0, i1)⟩

is not empty: let (i2, i3) be another tile.

B ⟨T (i0, i1)⟩ ∩ B ⟨T (i2, i3)⟩ =

{(i) : s(i0 − i1 − 1) + 1 ⩽ 2i ⩽ s(i0 − i1 + 1)− 1

∧s(i2 − i3 − 1) + 1 ⩽ 2i ⩽ s(i2 − i3 + 1)− 1}

The intervals [[s(i0 − i1 − 1) + 1; s(i0 − i1 + 1)− 1]] and

[[s(i2 − i3 − 1) + 1; s(i2 − i3 + 1)− 1]] intersect if i0 − i1 = i2 − i3 + 1, i0 − i1 = i2 − i3 or

i0 − i1 = i2 − i3 − 1.
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Figure 7.2: Footprint of one tile with a single affine dependence B(i, j) = (i). The one-dimensional
destination space is shown as a continuous line.

W(t'-t)

t'-t ∈ ker(A)
t'-t t'-t

W(t'-t)

Figure 7.3: Some consumer tiles of one tile T (⃗t) with a single dependence B(i, j) = (i), and the
projection W (t⃗′ − t⃗) on a supplementary of ker(A). There are a finite number of such projected
vectors, and they are constant.
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The valid (i2, i3)s are therefore:

(i2, i3) ∈ {(i0 + p, i1 + p); p ∈ Z}

∪ {(i0 + p− 1, i1 + p); p ∈ Z}

∪ {(i0 + p+ 1, i1 + p); p ∈ Z}

as shown in blue in Figure 7.3.

The space of valid (i2, i3) is infinite: we can visually see this as all tiles along a vertical

axis share the same footprint on A. We can formalize this intuition by computing the kernel

of A : in this case, it is

ker(A) = vect(e⃗j)

and the image of a point on A is invariant by any upwards or downwards translation.

There are however only three distinct footprints intersecting with that of T (i0, i1); the

other footprints stem from tiles which are translations along ker(A). These footprints come

from the top-left, top-right tiles and all tiles above them vertically; these consumer tiles are

shown in Figure 7.3.

We can decompose the space (i, j) using a basis of the kernel and a supplementary, for

instance E = vect(e⃗i)⊕ ker(A).

In this basis, we can express the coordinates of tile’s origins for the case where (i2, i3) =

(i0 + p+ 1, i1 + p) with p ∈ Z using the scaled normal vectors n⃗1, n⃗2:

i2n⃗1 + i3n⃗2 = i2
s

2
(e⃗i + e⃗j) + i3

s

2
(e⃗j − e⃗i)

=
s

2
(i0 + p+ 1)(e⃗i + e⃗j) +

s

2
(i1 + p)(e⃗j − e⃗i)

=
s

2
(i0 − i1 + 1)e⃗i +

s

2
(i0 + i1 + 2p+ 1)e⃗j

which, when projected onto vect(e⃗i), gives:

Pvect(e⃗i)(i2n⃗1 + i3n⃗2) =
s

2
(i0 − i1 + 1)e⃗i
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which is independent of p. This means that all points within tile T (i2, i3) have the same

image by B. Therefore, given (i0, i1), the entire family of tiles (i0 + p+ 1, i1 + p) have

the same footprint on A. We can therefore consider a single representative of that family

to compute the MARS.

Likewise, if (i2, i3) = (i0 + p− 1, i1 + p) with p ∈ Z, then

Pvect(e⃗i)(i2n⃗1 + i3n⃗2) =
s

2
(i0 − i1 − 1)e⃗i

which is also independent of p; the same conclusion holds for (i2, i3) = (i0 + p, i1 + p) and

Pvect(e⃗i)(i2n⃗1 + i3n⃗2) = 0⃗. Figure 7.3 shows in pink the projection of the translation vectors

from the tile T (⃗t) to its consumers (there are only two non-null projections, so only two such

vectors appear).

There are an infinity of tiles which footprint intersects with that of a given tile; however,

to compute the MARS, we have demonstrated that it is sufficient to take three representative

tiles. The same procedure as in Chapter 5 can be applied once these three consumer tiles

have been determined.

Per Algorithm 3, we compute the respective intersections with B ⟨T (i0, i1)⟩ of all other

consumer tiles: for (i2, i3) = (i0 + p+ 1, i1 + p) with p ∈ Z,

B ⟨T (i0, i1)⟩ ∩ B ⟨T (i0 + p+ 1, i1 + p)⟩ =

{(i) : s(i0 − i1 − 1) < 2i < s(i0 − i1 + 1)

∧s(i0 − i1) < 2i < s(i0 − i1 + 2)}

= {(i) : s(i0 − i1) < 2i < s(i0 − i1 + 1)}

When (i2, i3) = (i0 + p− 1, i1 + p) with p ∈ Z,

B ⟨T (i0, i1)⟩ ∩ B ⟨T (i0 + p− 1, i1 + p)⟩ =

= {(i) : s(i0 − i1 − 1) < 2i < s(i0 − i1)}
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Figure 7.4: MARS obtained with a single affine dependence B(i, j) = (i).

Finally, when (i2, i3) = (i0 + p, i1 + p),

B ⟨T (i0, i1)⟩ ∩ B ⟨T (i0 + p, i1 + p)⟩ =

= {(i) : s(i0 − i1) = 2i}

Also, B ⟨T (i0 + p+ 1, i1 + p)⟩ ∩B ⟨T (i0 + p− 1, i1 + p)⟩ = ∅, so we have all the MARS.

The MARS on symbol A for this program seen from a tile T (i0, i1) are therefore the

three sets {(i) : s(i0 − i1) < 2i < s(i0 − i1 + 1)}, {(i) : s(i0 − i1 − 1) < 2i < s(i0 − i1)} and

{(i) : s(i0 − i1) = 2i}. These MARS are shown in Figure 7.4.

General case

In the general case, computing the MARS for a single dependence leading to a non-

tiled space can be done as follows. Let D be the d-dimensional iteration space from which

the dependence originates, and E be the vector space such that D ⊂ E.; let A be the

destination space. Let B be the dependence with B(x⃗) = Ax⃗+ b⃗. Let (H1, . . . , Ht) be the t
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tiling hyperplanes, (n⃗1, . . . , n⃗t) normal vectors to the tiling hyperplanes, (s1, . . . , st) be the

tile sizes.

For a tile coordinate be t⃗ = (i1, . . . , it), the tile is defined as

T (⃗t) = {x⃗ = (x1, . . . , xd) : ∀j ∈ {1, . . . , t} : sjij ⩽ x⃗ · n⃗j < sj(1 + ij)}

We can compute, with t⃗ and another tile t⃗′ as a parameter, when the intersection of

B
〈
T (⃗t)

〉
and B

〈

T (t⃗′)
〉

is non-empty using affine operations. Let V (⃗t) be:

V (⃗t) =
{

t⃗′ : B
〈
T (⃗t)

〉
∩ B

〈

T (t⃗′)
〉

̸= ∅

}

which is obtainable by taking the parameter space of I (⃗t, t⃗′). V (⃗t) represents the tile coor-

dinates of all tiles which footprint on A intersects that of T (⃗t).

In Chapter 5, V (⃗t) is determined by browsing through neighboring tiles. The main

difficulty here is that V (⃗t) is potentially infinite. We will demonstrate that there are only

a finite number of distinct footprints overlapping with B
〈

T (t⃗′)
〉

. To determine them, we

suggest to decompose E into ker(A) and a supplementary I of ker(A), i.e.

E = I ⊕ ker(A)

Proposition 4 gives us that such a decomposition always exists, and per Proposition 3, there

is an orthonormal basis of the resulting space.

If r = rank(A), let (e⃗1, . . . , e⃗r) be a basis of I and (e⃗r+1, . . . , e⃗d) be a basis of ker(A) such

that (e⃗1, . . . , e⃗d) is an orthonormal basis of E. Let (n⃗p
1, . . . , n⃗

p
t ) be the orthogonal projections

of the n⃗is onto (e⃗1, . . . , e⃗r); in particular, these have zero r + 1-th through d-th coordinates.

For any t⃗′ ∈ V (⃗t), if t⃗′ − t⃗ = (δ1, . . . , δt), we can compute

W (t⃗′ − t⃗) =
t∑

i=1

δin⃗
p
i
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which represents the part of the translation between tiles that results in translating the

images.

The most important result needed to construct the MARS is the ability to enumerate all

the footprints. The following proposition formalizes it:

Proposition 5. The set P (⃗t) =
{

W (t⃗′ − t⃗) : t⃗′ ∈ V (⃗t)
}

is finite, and for each consumer

tile t⃗′ ∈ V (⃗t), there exists a unique p⃗ ∈ P (⃗t) such that

B
〈

T (t⃗′)
〉

=
{
y⃗ + Ap⃗ : y⃗ ∈ B

〈
T (⃗t)

〉}

and that p⃗ is a constant vector, independent of t⃗ (i.e. the consumer tiles are invariant

by translation).

Proof. Completeness of footprints: Let t⃗′ ∈ V (⃗t), i.e. a tile which footprint intersects

that of tile t⃗. We know that W (t⃗′ − t⃗) =
∑t

i=1(t
′
i − ti)n⃗

p
i = p⃗ ∈ P (⃗t). Then:

B
〈

T (t⃗′)
〉

=
{

Ax⃗+ b⃗ : ∀i : sit
′
i ⩽ x⃗ · n⃗i ⩽ (1 + t′i)si

}

=
{

Ax⃗+ b⃗ : ∀i : si(ti + (t′i − ti)) ⩽ x⃗ · n⃗i ⩽ (1 + ti + (t′i − ti))si

}

=
{

A
(
x⃗+

∑t
i=1(t

′
i − ti)n⃗i

)
+ b⃗ : ∀i : siti ⩽ x⃗ · n⃗i ⩽ (1 + ti)si

}

=
{

A
(
x⃗+

∑t
i=1(t

′
i − ti)n⃗

p
i

)
+ b⃗ : x⃗ ∈ T (⃗t)

}

=
{
y⃗ + Ap⃗ : y⃗ ∈ B

〈
T (⃗t)

〉}

using the fact that A(n⃗i) = A(n⃗p
i ).

Uniqueness of p⃗: A is bijective between I (supplementary of ker(A) in E) and Im(A).

Therefore, because p⃗ ∈ P (⃗t) is in I, it is the unique element of I which Ap⃗ is the image.

Therefore, p⃗ is unique in the sense of this proposition.
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Finiteness of P (⃗t): For all t⃗′ ∈ V (⃗t), B
〈

T (t⃗′)
〉

is a translation of B
〈
T (⃗t)

〉
by Ap⃗

with some p⃗ ∈ P (⃗t). The coordinates of t⃗ are integers, therefore Ap⃗ is an integer linear

combination of the An⃗p
i s for i ∈ {1, . . . , t}. T (⃗t) being bounded, the footprint B

〈
T (⃗t)

〉
is

bounded, therefore only a finite number of translations of itself by Ap⃗s intersect with it.

Constantness of p⃗: Let t⃗0, t⃗1 ∈ Zt and t⃗′0 ∈ V (⃗t0), and p⃗ = W (t⃗′ − t⃗). Let t⃗′1 =

t⃗1 + (t⃗′0 − t⃗0). Then:

B
〈

T (t⃗′1)
〉

=
{

A
(
x⃗+

∑t
i=1(t

′
1i − t1i)n⃗i

)
+ b⃗ : ∀i : sit1i ⩽ x⃗ · n⃗i ⩽ (1 + t1i)si

}

=
{

A
(
x⃗+

∑t
i=1(t1i − t1i + (t′0i − t0i))n⃗i

)
+ b⃗ : x⃗ ∈ T (⃗t1)

}

=
{

Ax⃗+
∑t

i=1(t
′
0i − t0i)An⃗i + b⃗ : x⃗ ∈ T (⃗t1)

}

=
{
B(x⃗) + Ap⃗ : x⃗ ∈ T (⃗t1)

}

which means that the translation between the images of T (⃗t1) and T (t⃗′1) is the same as that

of T (⃗t0) and T (t⃗′0).

We can therefore enumerate P (⃗t), knowing that for each w⃗ ∈ P (⃗t), P−1(w⃗) represents

consumer tiles that all have the same footprint by B. That footprint is computed as follows:

Φ(w⃗) = B
〈
T (⃗t) + w⃗

〉
where T (⃗t) + w⃗ =

{
x⃗+ w⃗ : x⃗ ∈ T (⃗t)

}

We can then compute the MARS. For all the combinations of w⃗s, i.e. for all C ∈ P
(
P (⃗t)

)
,

we determine the MARS associated with that combination of consumer tiles:

MC =
⋂

w⃗∈C

(
Φ(w⃗) ∩ B

〈
T (⃗t)

〉)
\
⋃

w⃗ /∈C

(
Φ(w⃗) ∩ B

〈
T (⃗t)

〉)
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7.4.4 Case of multiple, uniformly intersecting dependences

The previous section studied the case of a single dependence leading to a data space. We

look at the more frequent case of multiple dependences that all have the same linear part.

General case

If the dependences are uniformly intersecting, they all have the same linear part. This

means that they all have the same null space, and therefore the space decomposition into

E = I ⊕ ker(A) still applies.

Let there be Q dependences B1, . . . , BQ that are uniformly intersecting. This means that

there exists an unique matrix A such that:

∀i : Bi(x⃗) = Ax⃗+ b⃗i

Because all tiles share the same linear part, the space of consumer tiles for each depen-

dence will be the same up to a translation. Their linear part will notably be the same, and the

same argument as in the case above holds to guarantee that P (⃗t) =
{

W (t⃗′ − t⃗) : t⃗′ ∈ V (⃗t)
}

is finite.

Let, by abuse of the notation, B
〈
T (⃗t)

〉
be the combined footprint of all dependences:

B
〈
T (⃗t)

〉
=

Q
⋃

i=1

Bi

〈
T (⃗t)

〉

For each dependence Bi with i ∈ {1, . . . , Q}, we therefore compute Vi(⃗t) by intersecting

Bi

〈

T (t⃗′)
〉

and B
〈
T (⃗t)

〉
(i.e. we want the intersection of the footprint of one dependence

and the footprint of all other dependences); let

V (⃗t) =

Q
⋃

i=1

Vi(⃗t)
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The same decomposition E = vect(e⃗1, . . . , e⃗r) ⊕ vect(e⃗r + 1, . . . , e⃗d) is applicable due to all

Bis sharing the same linear part A.

We can give a more meaningful expression for P (⃗t):

P (⃗t) =

{

W (t⃗′ − t⃗) : t⃗′ ∈
Q
⋃

i=1

Vi(⃗t)

}

which means that P (⃗t) is composed of the projections of the vectors leading to any consumer

tile of any dependence (and therefore takes into account the uniform translations between

dependences).

The MARS can be computed by using P (⃗t). There are two differences with the case

when there is only a single dependence:

• The footprints of the consumer tiles Φ(w⃗) are specific to each dependence,

• The footprint of the tile t⃗ is the union of the footprint of all dependences.

For i ∈ {1, . . . , Q}, let Φi(w⃗) be:

Φi(w⃗) = Bi

〈
T (⃗t) + w⃗

〉
where T (⃗t) + w⃗ =

{
x⃗+ w⃗ : x⃗ ∈ T (⃗t)

}

The MARS are constructed by taking all subsets of consumer tiles from P (⃗t), and looking

at the points consumed only by these tiles.

Formally, let the cardinality of P (⃗t) be #C. For all K : 1 ⩽ K ⩽ #C and all permuta-

tions σ of {1, . . . ,#C}, let

C =
{
t⃗σ(1), . . . , t⃗σ(K)

}
and C = {t⃗σ(K+1), . . . , t⃗σ(#C)}

Then, a MARS is constructed according to the following rules:

• For each consumer tile coordinates t⃗′ ∈ C, there exists a dependence leading to T (t⃗′),

• No dependence leads to a consumer tile t⃗′ ∈ C
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These two conditions to form a MARS can be written as:

MC =
⋂

w⃗∈C

(
Q
⋃

i=1

Φi(w⃗) ∩B
〈
T (⃗t)

〉

)

\
⋃

w⃗∈C

(
Q
⋃

i=1

Φi(w⃗) ∩ B
〈
T (⃗t)

〉

)

and there are at most card(P(P (⃗t))) = 2card(P (t⃗)) Cs and therefore as many MARS.

Example: uniform dependences

In this paragraph, we show that the computation of MARS using Chapter 5 coincides

with that proposed in this chapter when the dependences are uniform. Such dependences

are a special case of uniformly intersecting dependences, with a linear part being identity.

Note that the destination space is considered to be a data space, and therefore dependences

within a tile are counted in the footprint (self-consumption of data produced by a tile is

dealt with in the next section).

Consider the Jacobi 1D example:

• Domain: {(i, j) : 0 ⩽ i < N, 0 ⩽ j < M}, basis vectors e⃗i, e⃗j

• Dependences : B1(i, j) = (i− 1, j − 1), B2(i, j) = (i, j − 1), B3(i, j) = (i+ 1, j − 1)

• Tiling hyperplanes : H1 : i+ j (n⃗2 = (1, 1)), H2 : j − i (n⃗2 = (−1, 1))

• Tile size : s ∈ N∗

We compute the unified footprint B
〈
T (⃗t)

〉
:

B
〈
T (⃗t)

〉
= {(i, j) : si1 ⩽ i+ j + (2− p) < s(1 + i1)

∧si2 ⩽ j − i+ p < s(1 + i2) : p ∈ {0, 1, 2}}

Notably, if we confuse the data space A(i, j) and the iteration space (i, j) (that is, each

cell of A contains the result of one iteration), and we restrict the footprint to those points

outside tile T (⃗t), we obtain the flow-in of that tile as in Figure 7.5, corresponding to the

same definition as in Chapter 5.
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Figure 7.5: Flow-in dependences of tile T (⃗t) with uniformly intersecting dependences (Jacobi
1D).

We determine the individual Vi(⃗t)s:

V1(⃗t) = {(i1, i2 − 1), (i1, i2), (i1 + 1, i2 − 1), (i1 + 1, i2)}

V2(⃗t) = {(i1, i2), (i1 + 1, i2), (i1, i2 − 1), (i1 − 1, i2), (i1, i2 + 1)}

V3(⃗t) = {(i1, i2), (i1 − 1, i2), (i1, i2 + 1), (i1 − 1, i2 + 1)}

which gives

V (⃗t) = {(i1, i2), (i1 − 1, i2), (i1, i2 + 1), (i1 − 1, i2 + 1), (i1 + 1, i2),

(i1, i2 − 1), (i1 + 1, i2 − 1)}

As ker(A) = {0}, we easily get that E = vect(e⃗i, e⃗j) and therefore constructing the

W (t⃗′ − t⃗) is straightforward, yielding the following P (⃗t):

P (⃗t) = {(0, 0), (−1, 0), (0, 1), (−1, 1), (1, 0), (0,−1), (1,−1)}
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Figure 7.6: Consumer tiles of array A with Jacobi 1D dependences, sharing their footprint with
tile T (⃗t).

This P (⃗t) means there are seven tiles (including t⃗ itself) which footprint (i.e. any dependence)

intersects with B
〈
T (⃗t)

〉
. These consumer tiles are shown in Figure 7.6.

For the sake of shortness, we will not enumerate all combinations of consumer tiles. The

MARS that appear after partitioning the footprints stemming from all consumer tiles are

shown in Fig.7.7.

Again, if we confuse the iteration and data spaces, we can obtain the same MARS as

computed in Chapter 5 by removing those MARS that are contained within T (⃗t); the result of

this operation, shown in Figure 7.8, illustrates the coincidence between the MARS computed

using uniform and affine dependences.

7.4.5 Case of multiple, non-uniformly intersecting dependences

We now consider the case where the dependences are not uniformly intersecting. In this

case, the main difference is that dependences no longer share the same linear part. Therefore,
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Figure 7.7: MARS for uniformly intersecting dependences (Jacobi 1D)

Figure 7.8: Coincidence between MARS computed with the uniform dependence method, and
those computed with the affine method.
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we need to write every dependence separately:

∀i ∈ {1, . . . , Q} : Bi(x⃗) = Aix⃗+ b⃗i

and each dependence having its own null space, there is one orthonormal basis of the null

space and a supplementary per dependence, and therefore one projection Wi(t⃗′ − t⃗) per

dependence.

Single null space requirement

Because the dependences may no longer have the same linear part, each linear part may

have a different null space. When considering any consumer tile t⃗′ ∈ V (⃗t), it is no longer

true that the projection of t⃗′ − t⃗ onto each null space is independent of the tile coordinates.

The invariance by translation of a tile from Proposition 5 therefore no longer holds.

Figure 7.9 gives an example of this case with two dependences: B1(i, j) = (i − j) and

B2(i, j) = (i + j). Here, the p⃗s depend on t⃗. Due to the dependence B1, all the tiles

northwest of each tile will intersect with its footprint; but the dependence B2 generates a

footprint southwest, also consumed (because of B1) by all tiles to its northwest.

In Figure 7.9, we show the W1(t⃗′ − t⃗) : ker(A1) points to the northeast, and I1 (supple-

mentary of ker(A1)) points to the northwest, parallel to the dependence B2.

A sufficient condition for a position-independent footprint to exist is that all dependences

have the same null space:

Proposition 6. If all dependences have the same null space, then all tiles have the same

footprint up to a translation. Otherwise said, for any δ⃗ ∈ Zt, there exists u⃗ ∈ Im(B) such

that:

For each t⃗ ∈ Zt, if t⃗′ = t⃗+ δ⃗, then

Q
⋃

i=1

Bi

〈

T (t⃗′)
〉

=

{

y⃗ + u⃗ : y⃗ ∈
Q
⋃

i=1

Bi

〈
T (⃗t)

〉

}
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ker(B1)

I1

W1(t'-t)

W1(t'-t)

B2(i, j) = (i+j)

B1(i, j) 

= (i-j)

Figure 7.9: Non-uniformly intersecting dependences do not guarantee that the vectorsWi(t⃗′−t⃗) do
not depend on t⃗, i.e. each tile’s footprint is not necessarily a translation of another tile’s footprint.

Proof. We know that the sought u⃗ exists for each dependence per Proposition 5: for each

i ∈ {1, . . . , Q}, there is a u⃗i such that

Bi

〈

T (t⃗′)
〉

=
{
y⃗ + u⃗i : y⃗ ∈ Bi

〈
T (⃗t)

〉}

This u⃗i is constructed as:

u⃗i =
t∑

i=1

(t′i − ti)n⃗
p
i

where the n⃗p
i s are the projections of the normal vectors onto a supplementary of the null

space of each dependence. Because all of the dependences have the same null space, it comes

that all of the u⃗i have the same projection onto the same supplementary of that null space.

Therefore, they are all equal.
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Constructon of MARS with a single null space

We must prove the requirements stated in Section 7.4.2, proved in the previous two cases,

still hold to compute the MARS.

The uniqueness of p⃗ (invariance by translation of a tile) has become a hypothesis, and

the dependences must satisfy this requirement to compute MARS. The previous paragraph

only gave a sufficient condition for it to be satisfied.

The finiteness (and enumerability) of the set representatives of consumer tiles still holds

if the dependences all have the same null space.

We can construct the MARS using the same procedure as in 7.4.4: the footprints of all

dependences are distinct, but the null space is the same, therefore the same definition for

P (⃗t) =
{

W (t⃗′ − t⃗)
}

as in 7.4.4 holds.

Case of multiple null spaces

If the dependences have multiple null spaces, there is no guarantee that MARS can be

constructed (see 7.4.5 for a counter-example).

Due to the null spaces being different, there is no guarantee that:

• The consumer tiles which footprint intersects with that of T (⃗t) are located at uniform

translations of t⃗ (see counter-example at 7.4.5), and

• The projections of translations from t⃗ to all other consumer tiles onto every null space

are finite sets of vectors, i.e. the method used previously to obtain a finite set of

representative consumer tiles still gives a finite set.

We propose a solution to the second point: we can obtain finite sets of translation

vectors to represent all consumer tiles for all dependences, although these translations may

be parametric.

The idea is to only consider the projection of dependences that contribute to a tile’s

footprint intersecting with B
〈
T (⃗t)

〉
; and make a partition of all the sets of consumer tiles

according to the contributing dependences.
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Indeed, it is equivalent to say that a dependence Bi contributes to the consumption, and

that the consumer tile t⃗′ is in Vi(⃗t). Multiple dependences contribute to the consumption

if and only if t⃗′ is simultaneously in all the Vi(⃗t)s of these dependences (i.e. it is in their

intersection).

Using this fact, we can partition the space of all consumer tiles according to which de-

pendences contribute to each family. In other words, given D ∈ P({1, . . . , Q}), we compute:

FD (⃗t) =
⋂

i∈D

Vi(⃗t) \
⋃

i/∈D

Vi(⃗t)

Proposition 7. Let t⃗′ ∈
⋃Q

i=1 Vi(⃗t). There exists a unique D ∈ P({1, . . . , Q}) (i.e. a unique

D ⊂ {1, . . . , Q}) such that t⃗′ ∈ FD. In other words, {FD : D ⊂ {1, . . . , Q}} is a partition of

the set of all consumer tiles
⋃Q

i=1 Vi(⃗t).

Proof. The construction of the FD (⃗t)s, given that {1, . . . , Q} is a finite set, guarantees the

fact all the FDs are disjoint and therefore creates a partition of
⋃Q

i=1 Vi(⃗t).

For each D ∈ P({1, . . . , Q}), FD (⃗t) contains a family of consumer tiles (possibly empty).

If it is not empty, then using the same reasoning as in Proposition 5 we can prove the

following proposition:

Proposition 8. Let D ∈ P({1, . . . , Q}). Then:

PD (⃗t) =
{

Wi(t⃗′ − t⃗) : t⃗′ ∈ FD ∧ i ∈ D
}

is a finite set.

Proof. Considering that FD (⃗t) ⊂
⋂

i∈D Vi(⃗t), Proposition 5 can be applied to each individual

Vi(⃗t).

The effects of parametric vectors leading to consumer tiles are unknown at this point.

Whether MARS can be constructed in this case is left as an open question.
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7.4.6 Case of dependences between tiled spaces

Dependences that lead to tiled spaces correspond to the passing of intermediate results

between tiles. These dependences, when uniform, were supported in Chapter 5, and trans-

mission of intermediate results was done through MARS transiting in the main memory.

This produced a partitioning of the flow-out set and flow-in set of each tile. In this section,

we extend this principle to affine dependences.

Uniform dependences used in Chapter 5 guaranteed that the producer and consumer were

in the same space (which is not the case with affine dependences), and the identity linear

part of the dependences gave that the image of a tile by a dependence was a translation of

the tile itself.

The main problem with having different consumer and producer spaces is the relation

between the consumer tiles’ “footprint” in the producer tiles’ space, and the producer space

tiling itself: the footprints of the consumer tiles by the dependences produce a tiling that

may not match with the existing tiling of the producer space.

In the previous sections (7.4.3, 7.4.4, 7.4.5), the existence of MARS relied on the footprints

of the consumer tiles (in a tiled iteration space) in the data space (hereafter destination

space) being independent of the consumer tile (i.e. the origin of the dependence). In

this section, the destination space is a tiled iteration space, and we want the tiling induced

by the dependence to “match” the existing tiling or be finer than it. To this aim, we add

the requirement is that the same footprints are independent of the producer tile (i.e.

the destination of the dependence).

Assuming there are t tiling hyperplanes in the source space, and q tiling hyperplanes in

the destination space, let their (unit) normal vectors be respectively n⃗1, . . . , n⃗t and d⃗1, . . . , d⃗q

and their tile sizes s1, . . . , st and z1, . . . , zq. Let the scaled normal vectors (translation of one

tile along each hyperplace) be n⃗1, . . . , n⃗t and d⃗1, . . . , d⃗q.

Let there be Q dependences B1, . . . , Bq. Let t⃗ = (t1, . . . , tt) ∈ CT be a consumer tile

vector coordinate, and let u⃗ = (u1, . . . , uq) ∈ DT be a producer tile vector coordinate (in
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the destination space of the dependences). Let a tile in the destination space be designated

as U (⃗t) using a definition analogous to that of the source space (see 7.3). Let the consumer

tiles of a destination tile u⃗ ∈ DT be

X(u⃗) =
{
t⃗ ∈ CT : ∃j ∈ {1, . . . , Q} : Bj

〈
T (⃗t)

〉}

and a tile translation vector in the destination space be expressed as:

N(u⃗) =

q
∑

k=1

ukd⃗k

The following proposition is a conjecture. It establishes the equivalence between a trans-

lation of a tile in the producer space and the translation of multiple tiles in the consumer

space.

Proposition 9. We have the following equivalence:

∀u⃗, u⃗′ ∈ DT, ∀t⃗ ∈ X(u⃗), ∀i ∈ {1, . . . , Q} :

∃t⃗′ ∈ X(u⃗′) : Bi

〈

T (t⃗′)
〉

=
{

y⃗ +N(u⃗′ − u⃗) : y⃗ ∈ Bi

〈
T (⃗t)

〉}

⇕

∀i ∈ {1, . . . , Q}, ∀j ∈ {1, . . . , t}, ∀k ∈ {1, . . . , q} :

∃m ∈ Z : m((Ain⃗j) · d⃗k)d⃗k = d⃗k

If proved, this proposition then establishes a condition on the dependences for there to

be a unique control flow, independent of the tile coordinates, for both the MARS to produce

(by each producer tile) and the MARS to retrieve (by each consumer tile).
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7.5 Related work

This work introduces a partitioning of data arrays and iteration spaces based on the

consumption pattern of each data. Existing work on partitioning aims at locality in the

first place, before memory access optimization. Our work relies on a locality optimization

(tiling) and seeks to further improve memory accesses. This work is made specific by the

combination of its objective (partitioning data for spatial locality) and its method (fine-grain

partitioning where iteration spaces are already partitioned).

7.5.1 Goal of partitioning

Existing work on partitioning mainly targets locality, such as Agarwal et al. [2]. Our

work uses the same definitions and follows the same reasoning as this paper, with a different

objective: while [2] seeks to adjust the tile size and shapes for locality (i.e. the footprint

size of each tile), we seek to exhibit spatial locality (data contiguity) opportunities. In that

sense, our work is not the first to propose a partitioning of iteration and data spaces using

affine dependences; however, the desired result (with a spatial locality objective) differs, and

so the construction procedure and hypotheses too.

Parallelism is also an objective: [88] perform iteration and data space partitioning, then

fuse partitions to maximize computation parallelism while preserving locality. The resulting

code is suitable for CPU and GPU implementation with a cache hierarchy; our partition-

ing scheme does not follow the temporal utilization of the retrieved data within a tile. It

therefore is more adapted to scratchpad memories, and scenarios memory accesses can be

decoupled from computations, because grouping data for spatial locality requires significant

on-chip data movement. This makes our approach more suitable for task-level pipelined

(read, execute, write) FPGA or ASIC accelerators, or for small CPU tiles (register tiling)

where the register space can be considered a scratchpad.
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7.5.2 Partitioning methods

Instead of partitioning the inter-tile communicated data with a tiling already known, one

can consider partitioning the inputs and outputs, and deriving tiled iteration space tiling

from the inputs or outputs themselves. This approach is taken in [88] where the tile shapes

are iteratively constructed from the (tiled) consumers of the iterations or data.

Monoparametric tiling [40] is performed using an inverse approach as ours: the data

spaces (variables) are partitioned into tiles, and then the iteration space is partitioned. It

requires the program to be represented as a system of affine recurrence equations, where

loops do not exist; instead, iteration spaces start to exist at code generation time, when a

variable needs to be computed. The main difference is that our partitioning scheme must be

applied after loop tiling, and therefore after most locality optimizations.

Dathathri et al. [7, 23] partitions the iteration spaces for inter-node communications

in distributed systems, in a manner similar to MARS: the flow-out iterations of each tile

are partitioned by dependences (dependence polyhedra) and consumer tiles (receiving tiles).

While both approaches are similar with respect to how data is grouped and transmitted,

ours is extended to data space partitioning. Our approach however adds a restriction on

the dependences: we require that the flow-out partitions are invariant across all tiles, so

that a simple, unique control flow can be derived. Our approach can then be used to create

position-independent accelerators that can process any tile in the iteration space.

It is noteworthy that both our approach and [23], along with other domain-specific inter-

node data partitioning schemes (e.g., [90]) acknowledge that, to achieve a high bandwidth

utilization of the RAM or network, inter-tile (inter-node) communications need a specific

data layout inferred using static analysis.
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7.6 Conclusion

Optimizing programs with respect to memory accesses is a key to improving their per-

formance. This chapter proposes an analysis method to automatically partition data and

iteration spaces from the polyhedral representation of a program when loop tiling is applied.

Partitioning data arrays is already known to improve spatial locality and, in turn, ac-

cess performance. In this chapter, we propose a fine-grain partitioning scheme that can be

used to optimize spatial locality for both iteration and data spaces based on the polyhedral

representation of a program. Although this chapter only proposes a theoretical study, the

effects of partitioning the data spaces, e.g. with data tiling, are known to be beneficial; and

likewise, Chapter 6 has shown that partitioning intermediate results and deriving a specific

allocation yields performance improvements.

Implementing MARS for affine dependences would incur additional engineering than

simply allocating intermediate results: the input data, usually intelligible to the user, would

need to be transformed prior to execution; likewise, the inverse transformation would need

to occur prior to handing back the results to the user. The profitability of partitioning the

input data into MARS would depend on the time such a transformation would take.
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Chapter 8

Conclusions and perspectives

This chapter summarizes and closes the work of this dissertation, and proposes future

research directions.

8.1 Conclusions

The continued increase in parallelism exploitation and of compute power is driving pro-

grams towards the limits of current memory architectures in terms of bandwidth. To cater

to the needs of each application, memory architectures are becoming more diverse, with

a landscape of bandwidth, latency and capacity options. To fully exploit the bandwidth

without suffering from the effects of latency, developers must adapt where the data is placed

and how it is accessed. Manually creating data layouts is a complicated task because of the

amount of program re-engineering it requires, and even more so if the program is a hardware

design.

This dissertation addresses the issue for domain-specific hardware, by presenting auto-

mated methods to derive memory allocations from a program. It sets itself within a context

where application-specific, ad-hoc memory allocations are sought, notably to relieve the

memory-boundness of specific applications. This problem is especially important to tackle

with intrinsically memory-bound applications, such as matrix-vector products [26].

This dissertation shows that it is possible to exhibit contiguous memory layouts and

access patterns from the polyhedral representation of a program; in this respect, it proposes

an allocation for accelerators using high-bandwidth memories seeking the longest contiguous

accesses (Chapter 4), and an irredundant allocation for hardware accelerators seeking to

maximize the usefulness of the data on the bus while keeping as much contiguous accesses

as possible (Chapter 6).
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A second contribution brought in by this dissertation is an automation aspect: both

allocations proposed are accompanied by algorithms and methodologies to automatically

allocate the data and create access functions. This makes it possible to create compiler

passes transparently implementing the proposed allocations. Chapters 4 and 5 describe the

mechanisms such compiler passes may implement to generate the memory layouts and access

functions.

A third contribution of this dissertation, used as a core element to build memory allo-

cations, are partitionings of the iteration and data spaces of polyhedral programs. While

we only suggest a use case for memory allocation, these partitionings can be used for other

purposes such as fault tolerance. The partitioning methods are based on the program’s de-

pendences, and two cases are studied: Chapter 5 covers the case of uniform dependences,

and Chapter 7 covers the broader case of affine dependences.

8.2 Perspectives

The work brought in by this dissertation consists in memory allocations for domain-

specific accelerators, and supporting polyhedral compilation analysis and transformation

techniques. These works are very specific, yet leave unexplored areas and open perspectives

on multiple fronts. We finish this dissertation by listing a few of them.

8.2.1 On the polyhedral compilation aspect

In this dissertation, we have studied memory allocations for simple cases of tiling, where

the tiling hyperplanes verify certain hypotheses (e.g. they are canonical in Chapter 4, linearly

independent from each other in Chapter 7). Further extending it to relax these hypotheses

may enable more programs to benefit from the memory allocations presented in this work.

Prior work, e.g. [92], has shown overlapped tiling brings performance benefits due to

additional parallelism at the expense of redundant computations. Our work currently does
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not support such tiles, where the data flow analysis would need to take into account the

redundant computations.

A refined definition of tiles and tiling hyperplanes could lead to the support of tiling

schemes with non-linearly independent hyperplanes, or with specific cuts such as diamond

tiling [9], monoparametric tiling [40] or fancier tile shapes such as [91].

8.2.2 On using more hardware properties

The work of this dissertation focuses on finding data flowing from tile to tile and gen-

erating allocation functions. Chapters 5 and 7 propose to partition the data according to

the consumption pattern, into coarse-grain blocks. This results in block-level allocations,

where the layout within each block of data is not specified. Using information on the target

architecture, it is possible to tune the inner layout of such blocks to relieve bank or port

contention. This is especially true when the data is partitioned into banks (e.g. into Block

RAMs inside FPGA chips, or in HBM stacks).

Another aspect is minimizing the access latency in the global memory. Optimizing the

layout of the MARS themselves as is done in Chapter 6 is done without respect to the

structure of the off-chip memory. The access latency of that external memory contributes

to the total access latency, and it therefore should be minimized. When DDR memories

are used, access latency is for instance lower for data in different banks than in different

rows of the same bank. Knowing such internals of the memory, other placements of MARS

minimizing the access latency while preserving contiguity (and therefore a low number of

transactions) could further improve performance.

8.2.3 On use cases of polyhedral-based allocations

The proposed methods mainly target domain-specific hardware architectures that man-

ange memory accesses on their own. However, we can suggest they be extended to more

generic architectures, and not necessarily for bandwidth optimization. Data contiguity can,

for instance, enable automatic vectorization, and contribute to a better utilization of vector
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units with fewer on-chip, register-to-register movements. Using MARS on register tiles [42]

would be another angle of attack to a register allocation problem tackled in domain-specific

optimizers such as YASK [84].
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